The gamma-uniform distribution and its applications
Hamzeh Torabi; Narges Montazeri Hedesh
Kybernetika (2012)
- Volume: 48, Issue: 1, page 16-30
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topTorabi, Hamzeh, and Montazeri Hedesh, Narges. "The gamma-uniform distribution and its applications." Kybernetika 48.1 (2012): 16-30. <http://eudml.org/doc/246973>.
@article{Torabi2012,
abstract = {Up to present for modelling and analyzing of random phenomenons, some statistical distributions are proposed. This paper considers a new general class of distributions, generated from the logit of the gamma random variable. A special case of this family is the Gamma-Uniform distribution. We derive expressions for the four moments, variance, skewness, kurtosis, Shannon and Rényi entropy of this distribution. We also discuss the asymptotic distribution of the extreme order statistics, simulation issues, estimation by method of maximum likelihood and the expected information matrix. We show that the Gamma-Uniform distribution provides great flexibility in modelling for negatively and positively skewed, convex-concave shape and reverse `J' shaped distributions. The usefulness of the new distribution is illustrated through two real data sets by showing that it is more flexible in analysing of the data than of the Beta Generalized-Exponential, Beta-Exponential, Beta-Pareto, Generalized Exponential, Exponential Poisson, Beta Generalized Half-Normal and Generalized Half-Normal distributions.},
author = {Torabi, Hamzeh, Montazeri Hedesh, Narges},
journal = {Kybernetika},
keywords = {Bathtub shaped hazard rate function; convex-concave shaped; ExpIntegralE function; regularized incomplete gamma function; reverse ‘J’ shaped; Shannon and Rényi entropy; Bathtub shaped hazard rate function; convex-concave shaped; regularized incomplete function; reverse `J' shaped distributions; Shannon and Rényi entropy},
language = {eng},
number = {1},
pages = {16-30},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The gamma-uniform distribution and its applications},
url = {http://eudml.org/doc/246973},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Torabi, Hamzeh
AU - Montazeri Hedesh, Narges
TI - The gamma-uniform distribution and its applications
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 1
SP - 16
EP - 30
AB - Up to present for modelling and analyzing of random phenomenons, some statistical distributions are proposed. This paper considers a new general class of distributions, generated from the logit of the gamma random variable. A special case of this family is the Gamma-Uniform distribution. We derive expressions for the four moments, variance, skewness, kurtosis, Shannon and Rényi entropy of this distribution. We also discuss the asymptotic distribution of the extreme order statistics, simulation issues, estimation by method of maximum likelihood and the expected information matrix. We show that the Gamma-Uniform distribution provides great flexibility in modelling for negatively and positively skewed, convex-concave shape and reverse `J' shaped distributions. The usefulness of the new distribution is illustrated through two real data sets by showing that it is more flexible in analysing of the data than of the Beta Generalized-Exponential, Beta-Exponential, Beta-Pareto, Generalized Exponential, Exponential Poisson, Beta Generalized Half-Normal and Generalized Half-Normal distributions.
LA - eng
KW - Bathtub shaped hazard rate function; convex-concave shaped; ExpIntegralE function; regularized incomplete gamma function; reverse ‘J’ shaped; Shannon and Rényi entropy; Bathtub shaped hazard rate function; convex-concave shaped; regularized incomplete function; reverse `J' shaped distributions; Shannon and Rényi entropy
UR - http://eudml.org/doc/246973
ER -
References
top- A. Akinsete, F. Famoye, C. Lee, 10.1080/02331880801983876, Statistics 42 (2008), 6, 547-563. (2008) MR2465134DOI10.1080/02331880801983876
- L. J. Bain, M. Engelhardt, Introduction to Probability and Mathematical Statistics., Second edition. Duxbury Press, Boston 1991, pp. 250–259. (1991) MR0750654
- W. Barreto-Souza, A. H. S. Santos, G. M. Cordeirob, 10.1080/00949650802552402, Statist. Comput. Simul. 80 (2010), 159-172. (2010) MR2603623DOI10.1080/00949650802552402
- K. Cooray, M. M. A. Ananda, 10.1080/03610920701826088, Comm. Statist. Theory Methods 37 (2008), 1323-1337. (2008) Zbl1163.62006MR2526464DOI10.1080/03610920701826088
- G. M. Cordeiro, A. J. Lemonte, 10.1016/j.csda.2010.10.007, Comput. Statist. Data Anal. 55 (2011), 1445-1461. (2011) MR2741426DOI10.1016/j.csda.2010.10.007
- G. M. Cordeiro, A. J. Lemonte, 10.1016/j.spl.2011.01.017, Statist. Probab. Lett. 81 (2011), 973-982. (2011) Zbl1221.60011MR2803732DOI10.1016/j.spl.2011.01.017
- N. Eugene, C. Lee, F. Famoye, 10.1081/STA-120003130, Commun. Statist. Theory Methods 31 (2002), 4, 497-512. (2002) MR1902307DOI10.1081/STA-120003130
- P. Feigl, M. Zelen, 10.2307/2528247, Biometrics 21 (1965), 4, 826-838. (1965) DOI10.2307/2528247
- R. D. Gupta, D. Kundu, 10.1111/1467-842X.00072, Austral. and New Zealand J. Statist. 41 (1999), 2, 173-188. (1999) Zbl1007.62503MR1705342DOI10.1111/1467-842X.00072
- M. C. Jones, 10.1007/BF02602999, Test 13 (2004), 1, 1-43. (2004) Zbl1110.62012MR2065642DOI10.1007/BF02602999
- C. Kus, 10.1016/j.csda.2006.07.017, Comput. Statist. Data Anal. 51 (2007), 4497-4509. (2007) Zbl1162.62309MR2364461DOI10.1016/j.csda.2006.07.017
- C. Lee, F. Famoye, O. Olumolade, The Beta-Weibull distribution., J. Statist. Theory Appl. 4 (2005), 2, 121-136. (2005) MR2210672
- S. Nadarajah, S. Kotz, 10.1155/S1024123X04403068, Math. Probl. Engrg. 10 (2004), 323-332. (2004) Zbl1068.62012MR2109721DOI10.1155/S1024123X04403068
- S. Nadarajah, S. Kotz, 10.1016/j.ress.2005.05.008, Reliability Engrg. System Safety 91 (2006), 689-697. (2006) DOI10.1016/j.ress.2005.05.008
- S. Nadarajah, A. K. Gupta, The Beta Fréchet distribution., Far East J. Theor. Statist. 15 (2004), 15-24. (2004) Zbl1074.62008MR2108090
- P. F. Paranaíba, E. M. M. Ortega, G. M. Cordeiro, R. R. Pescim, M. A. R. Pascoa, 10.1016/j.csda.2010.09.009, Comput. Statist. Data Anal. 55 (2011), 1118-1136. (2011) MR2736499DOI10.1016/j.csda.2010.09.009
- R. R. Pescim, C. G. B. Demétrio, G. M. Cordeiro, E. M. M. Ortega, M. R. Urbano, 10.1016/j.csda.2009.10.007, Comput. Statist. Data Anal. 54 (2009), 945-957. (2009) MR2580929DOI10.1016/j.csda.2009.10.007
- E. Mahmoudi, 10.1016/j.matcom.2011.03.006, Math. Comput. Simul. 81 (2011), 11, 2414-2430. (2011) Zbl1219.62024MR2811794DOI10.1016/j.matcom.2011.03.006
- G. O. Silva, E. M. M. Ortega, G. M. Cordeiro, The beta modified Weibull distribution., Lifetime Data Anal. 16 (2010), 409-430. (2010) MR2657898
- K. Zografos, S. Nadarajah, 10.1016/j.spl.2004.10.023, Statist. Probab. Lett. 71 (2005), 71-84. (2005) Zbl1058.62008MR2125433DOI10.1016/j.spl.2004.10.023
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.