The gamma-uniform distribution and its applications

Hamzeh Torabi; Narges Montazeri Hedesh

Kybernetika (2012)

  • Volume: 48, Issue: 1, page 16-30
  • ISSN: 0023-5954

Abstract

top
Up to present for modelling and analyzing of random phenomenons, some statistical distributions are proposed. This paper considers a new general class of distributions, generated from the logit of the gamma random variable. A special case of this family is the Gamma-Uniform distribution. We derive expressions for the four moments, variance, skewness, kurtosis, Shannon and Rényi entropy of this distribution. We also discuss the asymptotic distribution of the extreme order statistics, simulation issues, estimation by method of maximum likelihood and the expected information matrix. We show that the Gamma-Uniform distribution provides great flexibility in modelling for negatively and positively skewed, convex-concave shape and reverse `J' shaped distributions. The usefulness of the new distribution is illustrated through two real data sets by showing that it is more flexible in analysing of the data than of the Beta Generalized-Exponential, Beta-Exponential, Beta-Pareto, Generalized Exponential, Exponential Poisson, Beta Generalized Half-Normal and Generalized Half-Normal distributions.

How to cite

top

Torabi, Hamzeh, and Montazeri Hedesh, Narges. "The gamma-uniform distribution and its applications." Kybernetika 48.1 (2012): 16-30. <http://eudml.org/doc/246973>.

@article{Torabi2012,
abstract = {Up to present for modelling and analyzing of random phenomenons, some statistical distributions are proposed. This paper considers a new general class of distributions, generated from the logit of the gamma random variable. A special case of this family is the Gamma-Uniform distribution. We derive expressions for the four moments, variance, skewness, kurtosis, Shannon and Rényi entropy of this distribution. We also discuss the asymptotic distribution of the extreme order statistics, simulation issues, estimation by method of maximum likelihood and the expected information matrix. We show that the Gamma-Uniform distribution provides great flexibility in modelling for negatively and positively skewed, convex-concave shape and reverse `J' shaped distributions. The usefulness of the new distribution is illustrated through two real data sets by showing that it is more flexible in analysing of the data than of the Beta Generalized-Exponential, Beta-Exponential, Beta-Pareto, Generalized Exponential, Exponential Poisson, Beta Generalized Half-Normal and Generalized Half-Normal distributions.},
author = {Torabi, Hamzeh, Montazeri Hedesh, Narges},
journal = {Kybernetika},
keywords = {Bathtub shaped hazard rate function; convex-concave shaped; ExpIntegralE function; regularized incomplete gamma function; reverse ‘J’ shaped; Shannon and Rényi entropy; Bathtub shaped hazard rate function; convex-concave shaped; regularized incomplete function; reverse `J' shaped distributions; Shannon and Rényi entropy},
language = {eng},
number = {1},
pages = {16-30},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The gamma-uniform distribution and its applications},
url = {http://eudml.org/doc/246973},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Torabi, Hamzeh
AU - Montazeri Hedesh, Narges
TI - The gamma-uniform distribution and its applications
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 1
SP - 16
EP - 30
AB - Up to present for modelling and analyzing of random phenomenons, some statistical distributions are proposed. This paper considers a new general class of distributions, generated from the logit of the gamma random variable. A special case of this family is the Gamma-Uniform distribution. We derive expressions for the four moments, variance, skewness, kurtosis, Shannon and Rényi entropy of this distribution. We also discuss the asymptotic distribution of the extreme order statistics, simulation issues, estimation by method of maximum likelihood and the expected information matrix. We show that the Gamma-Uniform distribution provides great flexibility in modelling for negatively and positively skewed, convex-concave shape and reverse `J' shaped distributions. The usefulness of the new distribution is illustrated through two real data sets by showing that it is more flexible in analysing of the data than of the Beta Generalized-Exponential, Beta-Exponential, Beta-Pareto, Generalized Exponential, Exponential Poisson, Beta Generalized Half-Normal and Generalized Half-Normal distributions.
LA - eng
KW - Bathtub shaped hazard rate function; convex-concave shaped; ExpIntegralE function; regularized incomplete gamma function; reverse ‘J’ shaped; Shannon and Rényi entropy; Bathtub shaped hazard rate function; convex-concave shaped; regularized incomplete function; reverse `J' shaped distributions; Shannon and Rényi entropy
UR - http://eudml.org/doc/246973
ER -

References

top
  1. A. Akinsete, F. Famoye, C. Lee, 10.1080/02331880801983876, Statistics 42 (2008), 6, 547-563. (2008) MR2465134DOI10.1080/02331880801983876
  2. L. J. Bain, M. Engelhardt, Introduction to Probability and Mathematical Statistics., Second edition. Duxbury Press, Boston 1991, pp. 250–259. (1991) MR0750654
  3. W. Barreto-Souza, A. H. S. Santos, G. M. Cordeirob, 10.1080/00949650802552402, Statist. Comput. Simul. 80 (2010), 159-172. (2010) MR2603623DOI10.1080/00949650802552402
  4. K. Cooray, M. M. A. Ananda, 10.1080/03610920701826088, Comm. Statist. Theory Methods 37 (2008), 1323-1337. (2008) Zbl1163.62006MR2526464DOI10.1080/03610920701826088
  5. G. M. Cordeiro, A. J. Lemonte, 10.1016/j.csda.2010.10.007, Comput. Statist. Data Anal. 55 (2011), 1445-1461. (2011) MR2741426DOI10.1016/j.csda.2010.10.007
  6. G. M. Cordeiro, A. J. Lemonte, 10.1016/j.spl.2011.01.017, Statist. Probab. Lett. 81 (2011), 973-982. (2011) Zbl1221.60011MR2803732DOI10.1016/j.spl.2011.01.017
  7. N. Eugene, C. Lee, F. Famoye, 10.1081/STA-120003130, Commun. Statist. Theory Methods 31 (2002), 4, 497-512. (2002) MR1902307DOI10.1081/STA-120003130
  8. P. Feigl, M. Zelen, 10.2307/2528247, Biometrics 21 (1965), 4, 826-838. (1965) DOI10.2307/2528247
  9. R. D. Gupta, D. Kundu, 10.1111/1467-842X.00072, Austral. and New Zealand J. Statist. 41 (1999), 2, 173-188. (1999) Zbl1007.62503MR1705342DOI10.1111/1467-842X.00072
  10. M. C. Jones, 10.1007/BF02602999, Test 13 (2004), 1, 1-43. (2004) Zbl1110.62012MR2065642DOI10.1007/BF02602999
  11. C. Kus, 10.1016/j.csda.2006.07.017, Comput. Statist. Data Anal. 51 (2007), 4497-4509. (2007) Zbl1162.62309MR2364461DOI10.1016/j.csda.2006.07.017
  12. C. Lee, F. Famoye, O. Olumolade, The Beta-Weibull distribution., J. Statist. Theory Appl. 4 (2005), 2, 121-136. (2005) MR2210672
  13. S. Nadarajah, S. Kotz, 10.1155/S1024123X04403068, Math. Probl. Engrg. 10 (2004), 323-332. (2004) Zbl1068.62012MR2109721DOI10.1155/S1024123X04403068
  14. S. Nadarajah, S. Kotz, 10.1016/j.ress.2005.05.008, Reliability Engrg. System Safety 91 (2006), 689-697. (2006) DOI10.1016/j.ress.2005.05.008
  15. S. Nadarajah, A. K. Gupta, The Beta Fréchet distribution., Far East J. Theor. Statist. 15 (2004), 15-24. (2004) Zbl1074.62008MR2108090
  16. P. F. Paranaíba, E. M. M. Ortega, G. M. Cordeiro, R. R. Pescim, M. A. R. Pascoa, 10.1016/j.csda.2010.09.009, Comput. Statist. Data Anal. 55 (2011), 1118-1136. (2011) MR2736499DOI10.1016/j.csda.2010.09.009
  17. R. R. Pescim, C. G. B. Demétrio, G. M. Cordeiro, E. M. M. Ortega, M. R. Urbano, 10.1016/j.csda.2009.10.007, Comput. Statist. Data Anal. 54 (2009), 945-957. (2009) MR2580929DOI10.1016/j.csda.2009.10.007
  18. E. Mahmoudi, 10.1016/j.matcom.2011.03.006, Math. Comput. Simul. 81 (2011), 11, 2414-2430. (2011) Zbl1219.62024MR2811794DOI10.1016/j.matcom.2011.03.006
  19. G. O. Silva, E. M. M. Ortega, G. M. Cordeiro, The beta modified Weibull distribution., Lifetime Data Anal. 16 (2010), 409-430. (2010) MR2657898
  20. K. Zografos, S. Nadarajah, 10.1016/j.spl.2004.10.023, Statist. Probab. Lett. 71 (2005), 71-84. (2005) Zbl1058.62008MR2125433DOI10.1016/j.spl.2004.10.023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.