Backward doubly stochastic differential equations with infinite time horizon

Bo Zhu; Baoyan Han

Applications of Mathematics (2012)

  • Volume: 57, Issue: 6, page 641-653
  • ISSN: 0862-7940

Abstract

top
We give a sufficient condition on the coefficients of a class of infinite horizon backward doubly stochastic differential equations (BDSDES), under which the infinite horizon BDSDES have a unique solution for any given square integrable terminal values. We also show continuous dependence theorem and convergence theorem for this kind of equations.

How to cite

top

Zhu, Bo, and Han, Baoyan. "Backward doubly stochastic differential equations with infinite time horizon." Applications of Mathematics 57.6 (2012): 641-653. <http://eudml.org/doc/247016>.

@article{Zhu2012,
abstract = {We give a sufficient condition on the coefficients of a class of infinite horizon backward doubly stochastic differential equations (BDSDES), under which the infinite horizon BDSDES have a unique solution for any given square integrable terminal values. We also show continuous dependence theorem and convergence theorem for this kind of equations.},
author = {Zhu, Bo, Han, Baoyan},
journal = {Applications of Mathematics},
keywords = {infinite horizon; filtration; backward stochastic integral; backward doubly stochastic differential equations; infinite time horizon; backward doubly stochastic differential equations; filtration; backward stochastic integral},
language = {eng},
number = {6},
pages = {641-653},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Backward doubly stochastic differential equations with infinite time horizon},
url = {http://eudml.org/doc/247016},
volume = {57},
year = {2012},
}

TY - JOUR
AU - Zhu, Bo
AU - Han, Baoyan
TI - Backward doubly stochastic differential equations with infinite time horizon
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 6
SP - 641
EP - 653
AB - We give a sufficient condition on the coefficients of a class of infinite horizon backward doubly stochastic differential equations (BDSDES), under which the infinite horizon BDSDES have a unique solution for any given square integrable terminal values. We also show continuous dependence theorem and convergence theorem for this kind of equations.
LA - eng
KW - infinite horizon; filtration; backward stochastic integral; backward doubly stochastic differential equations; infinite time horizon; backward doubly stochastic differential equations; filtration; backward stochastic integral
UR - http://eudml.org/doc/247016
ER -

References

top
  1. Bally, V., Matoussi, A., 10.1023/A:1007825232513, J. Theor. Probab. 14 (2001), 125-164. (2001) MR1822898DOI10.1023/A:1007825232513
  2. Buckdahn, R., Ma, J., 10.1016/S0304-4149(00)00093-4, Stoch. Proc. Appl. 93 (2001), 181-204. (2001) Zbl1053.60065MR1828772DOI10.1016/S0304-4149(00)00093-4
  3. Buckdahn, R., Ma, J., 10.1016/S0304-4149(00)00092-2, Stoch. Proc. Appl. 93 (2001), 205-228. (2001) Zbl1053.60066MR1831830DOI10.1016/S0304-4149(00)00092-2
  4. Chen, Z., Wang, B., 10.1017/S1446788700002172, J. Aust. Math. Soc., Ser. A 69 (2000), 187-211. (2000) MR1775178DOI10.1017/S1446788700002172
  5. Darling, R., Pardoux, E., 10.1214/aop/1024404508, Ann. Probab. 25 (1997), 1135-1159. (1997) MR1457614DOI10.1214/aop/1024404508
  6. Karoui, N. El, Peng, S., Quenez, M. C., 10.1111/1467-9965.00022, Math. Finance 7 (1977), 1-71. (1977) MR1434407DOI10.1111/1467-9965.00022
  7. Ma, J., Protter, P., Yong, J., 10.1007/BF01192258, Theory Related Fields 98 (1994), 339-359. (1994) Zbl0794.60056MR1262970DOI10.1007/BF01192258
  8. Nualart, D., Pardoux, E., 10.1007/BF00353876, Probab. Theory Relat. Fields 78 (1988), 535-581. (1988) Zbl0629.60061MR0950346DOI10.1007/BF00353876
  9. Pardoux, E., Peng, S., 10.1016/0167-6911(90)90082-6, Syst. Control Lett. 14 (1990), 55-61. (1990) Zbl0692.93064MR1037747DOI10.1016/0167-6911(90)90082-6
  10. Pardoux, E., Peng, S., 10.1007/BF01192514, Probab. Theory Relat. Fields 98 (1994), 209-227. (1994) Zbl0792.60050MR1258986DOI10.1007/BF01192514
  11. Pardoux, E., Stochastic partial differential equations, Fudan Lecture Notes (2007). (2007) 
  12. Peng, S., 10.1080/17442509108833727, Stochastics Stochastics Rep. 37 (1991), 61-74. (1991) Zbl0739.60060MR1149116DOI10.1080/17442509108833727
  13. Peng, S., Backward Stochastic Differential Equations and Related g -expectation, Longman Harlow (1997), 141-159. (1997) MR1752680
  14. Peng, S., Shi, Y., 10.1016/S0304-4149(99)00066-6, Stoch. Proc. Appl. 85 (2000), 75-92. (2000) Zbl0997.60062MR1730617DOI10.1016/S0304-4149(99)00066-6
  15. Peng, S., Shi, Y., 10.1016/S1631-073X(03)00183-3, C. R. Math., Acad. Sci. Paris 336 (2003), 773-778. (2003) Zbl1031.60055MR1989279DOI10.1016/S1631-073X(03)00183-3
  16. Zhang, Q., Zhao, H., 10.1016/j.jfa.2007.06.019, J. Funct. Anal. 252 (2007), 171-219. (2007) Zbl1127.60059MR2357354DOI10.1016/j.jfa.2007.06.019
  17. Zhu, B., Han, B., 10.1155/2012/304781, J. Appl. Math. 2012 (Article ID 3047)81, doi:10.1155/2012/304781. Zbl1244.60064MR2910917DOI10.1155/2012/304781

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.