On -caliber and an application of Prikry’s partial order
Commentationes Mathematicae Universitatis Carolinae (2011)
- Volume: 52, Issue: 3, page 463-471
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSzymański, Andrzej. "On $\pi $-caliber and an application of Prikry’s partial order." Commentationes Mathematicae Universitatis Carolinae 52.3 (2011): 463-471. <http://eudml.org/doc/247029>.
@article{Szymański2011,
abstract = {We study the concept of $\pi $-caliber as an alternative to the well known concept of caliber. $\pi $-caliber and caliber values coincide for regular cardinals greater than or equal to the Souslin number of a space. Unlike caliber, $\pi $-caliber may take on values below the Souslin number of a space. Under Martin’s axiom, $2^\{\omega \}$ is a $\pi $-caliber of $\mathbb \{N\}^\{\ast \}$. Prikry’s poset is used to settle a problem by Fedeli regarding possible values of very weak caliber.},
author = {Szymański, Andrzej},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nowhere dense; point-$\kappa $ family; $\pi $-caliber; nowhere dense; point- family; -caliber},
language = {eng},
number = {3},
pages = {463-471},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On $\pi $-caliber and an application of Prikry’s partial order},
url = {http://eudml.org/doc/247029},
volume = {52},
year = {2011},
}
TY - JOUR
AU - Szymański, Andrzej
TI - On $\pi $-caliber and an application of Prikry’s partial order
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 3
SP - 463
EP - 471
AB - We study the concept of $\pi $-caliber as an alternative to the well known concept of caliber. $\pi $-caliber and caliber values coincide for regular cardinals greater than or equal to the Souslin number of a space. Unlike caliber, $\pi $-caliber may take on values below the Souslin number of a space. Under Martin’s axiom, $2^{\omega }$ is a $\pi $-caliber of $\mathbb {N}^{\ast }$. Prikry’s poset is used to settle a problem by Fedeli regarding possible values of very weak caliber.
LA - eng
KW - nowhere dense; point-$\kappa $ family; $\pi $-caliber; nowhere dense; point- family; -caliber
UR - http://eudml.org/doc/247029
ER -
References
top- Comfort W., Negrepontis S., The Theory of Ultrafilters, Springer, New York-Heidelberg, 1974. Zbl0298.02004MR0396267
- Comfort W., Negrepontis S., Chain Condition in Topology, Cambridge Tracts in Mathematics, 79, Cambridge University Press, Cambridge-New York, 1982. MR0665100
- Engelking R., General Topology, Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
- Fedeli A., On the -Baire property, Comment. Math. Univ. Carolin. 34 (1993), 525–527. MR1243083
- Fedeli A., Weak calibers and the Scott-Watson theorem, Czechoslovak Math. J. 46 (1996), 421–425. Zbl0879.54026MR1408297
- Fletcher P., Lindgren W., 10.1007/BF01228197, Arch. Math. (Basel) 24 (1973), 186–187. Zbl0259.54019MR0315663DOI10.1007/BF01228197
- Jech T., Set Theory, 2nd edition, Springer, Berlin, 1997. Zbl1007.03002MR1492987
- Juhasz I., Cardinal Functions in Topology: Ten Years After, Mathematical Centre Tracts, 123, Mathematisch Centrum, Amsterdam, 1980. MR0576927
- Kanamori A., The Higher Infinite. Large Cardinals in Set Theory from their Beginnings, Perspectives in Mathematical Logic, Springer, Berlin, 1994. Zbl1154.03033MR1321144
- McCoy R.A., Smith J.C., The almost Lindelöf property for Baire spaces, Topology Proc. 9 (1984), 99–104. Zbl0559.54019MR0781554
- Prikry K., Changing measurable cardinals into accessible cardinals, Dissertationes Math. 68 (1970). MR0262075
- Šanin N.A., On intersection of open subsets in the product of topological spaces, C. R. (Doklady) Acad. Sci. URSS 53 (1946), 499–501. MR0018815
- Šanin N.A., On the product of topological spaces, Trudy Mat. Inst. Steklov. 24 (1948). MR0027310
- Tall F.D., 10.1016/0016-660X(74)90010-5, General Topology Appl. 4 (1974), 315–339. Zbl0293.54003MR0423284DOI10.1016/0016-660X(74)90010-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.