The invertibility of the isoparametric mappings for triangular quadratic Lagrange finite elements

Josef Dalík

Applications of Mathematics (2012)

  • Volume: 57, Issue: 5, page 445-462
  • ISSN: 0862-7940

Abstract

top
A reference triangular quadratic Lagrange finite element consists of a right triangle K ^ with unit legs S 1 , S 2 , a local space ^ of quadratic polynomials on K ^ and of parameters relating the values in the vertices and midpoints of sides of K ^ to every function from ^ . Any isoparametric triangular quadratic Lagrange finite element is determined by an invertible isoparametric mapping h = ( F 1 , F 2 ) ^ × ^ . We explicitly describe such invertible isoparametric mappings h for which the images h ( S 1 ) , h ( S 2 ) of the segments S 1 , S 2 are segments, too. In this way we extend the well-known result going back to W. B. Jordan, 1970, characterizing those invertible isoparametric mappings whose restrictions to the segments S 1 and S 2 are linear.

How to cite

top

Dalík, Josef. "The invertibility of the isoparametric mappings for triangular quadratic Lagrange finite elements." Applications of Mathematics 57.5 (2012): 445-462. <http://eudml.org/doc/247048>.

@article{Dalík2012,
abstract = {A reference triangular quadratic Lagrange finite element consists of a right triangle $\hat\{K\}$ with unit legs $S_1$, $S_2$, a local space $\hat\{\mathcal \{L\}\}$ of quadratic polynomials on $\hat\{K\}$ and of parameters relating the values in the vertices and midpoints of sides of $\hat\{K\}$ to every function from $\hat\{\mathcal \{L\}\}$. Any isoparametric triangular quadratic Lagrange finite element is determined by an invertible isoparametric mapping $\{\mathcal \{F\}\}_h=(F_1,F_2)\in \hat\{\mathcal \{L\}\}\times \hat\{\mathcal \{L\}\}$. We explicitly describe such invertible isoparametric mappings $\{\mathcal \{F\}\}_h$ for which the images $\{\mathcal \{F\}\}_h(S_1)$, $\{\mathcal \{F\}\}_h(S_2)$ of the segments $S_1$, $S_2$ are segments, too. In this way we extend the well-known result going back to W. B. Jordan, 1970, characterizing those invertible isoparametric mappings whose restrictions to the segments $S_1$ and $S_2$ are linear.},
author = {Dalík, Josef},
journal = {Applications of Mathematics},
keywords = {isoparametric triangular quadratic Lagrange finite element; invertible isoparametric mapping; initial or boundary value problems; isoparametric triangular quadratic Lagrange finite element; invertible isoparametric mapping; initial or boundary value problems},
language = {eng},
number = {5},
pages = {445-462},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The invertibility of the isoparametric mappings for triangular quadratic Lagrange finite elements},
url = {http://eudml.org/doc/247048},
volume = {57},
year = {2012},
}

TY - JOUR
AU - Dalík, Josef
TI - The invertibility of the isoparametric mappings for triangular quadratic Lagrange finite elements
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 5
SP - 445
EP - 462
AB - A reference triangular quadratic Lagrange finite element consists of a right triangle $\hat{K}$ with unit legs $S_1$, $S_2$, a local space $\hat{\mathcal {L}}$ of quadratic polynomials on $\hat{K}$ and of parameters relating the values in the vertices and midpoints of sides of $\hat{K}$ to every function from $\hat{\mathcal {L}}$. Any isoparametric triangular quadratic Lagrange finite element is determined by an invertible isoparametric mapping ${\mathcal {F}}_h=(F_1,F_2)\in \hat{\mathcal {L}}\times \hat{\mathcal {L}}$. We explicitly describe such invertible isoparametric mappings ${\mathcal {F}}_h$ for which the images ${\mathcal {F}}_h(S_1)$, ${\mathcal {F}}_h(S_2)$ of the segments $S_1$, $S_2$ are segments, too. In this way we extend the well-known result going back to W. B. Jordan, 1970, characterizing those invertible isoparametric mappings whose restrictions to the segments $S_1$ and $S_2$ are linear.
LA - eng
KW - isoparametric triangular quadratic Lagrange finite element; invertible isoparametric mapping; initial or boundary value problems; isoparametric triangular quadratic Lagrange finite element; invertible isoparametric mapping; initial or boundary value problems
UR - http://eudml.org/doc/247048
ER -

References

top
  1. Barrett, K. E., 10.1002/(SICI)1099-0887(199611)12:11<755::AID-CNM15>3.0.CO;2-S, Commun. Numer. Methods Eng. 12 (1996), 755-766. (1996) Zbl0862.73057DOI10.1002/(SICI)1099-0887(199611)12:11<755::AID-CNM15>3.0.CO;2-S
  2. Ciarlet, P. G., The Finite Element Method for Elliptic Problems, SIAM Philadelphia (2002). (2002) MR1930132
  3. Jordan, W. B., A.E.C. Research and Development Report KAPL-M-7112, (1970). (1970) 
  4. Knabner, P., Korotov, S., Summ, G., 10.1016/S0168-874X(02)00196-8, Finite Elem. Anal. Des. 40 (2003), 159-172 2014327. (2003) MR2014327DOI10.1016/S0168-874X(02)00196-8
  5. Knabner, P., Summ, G., 10.1007/PL00005454, Numer. Math. 88 (2001), 661-681. (2001) Zbl0989.65133MR1836875DOI10.1007/PL00005454
  6. Křížek, M., Neittaanmäki, P., Finite Element Approximation of Variational Problems and Applications, Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1990). (1990) MR1066462
  7. Lautersztajn-S, N., Samuelsson, A., 10.1002/(SICI)1099-0887(199802)14:2<87::AID-CNM128>3.0.CO;2-A, Commun. Numer. Methods Eng. 14 (1998), 87-101. (1998) Zbl0947.74064MR1610166DOI10.1002/(SICI)1099-0887(199802)14:2<87::AID-CNM128>3.0.CO;2-A
  8. Meisters, G. H., Olech, C., Locally one-to-one mappings and a classical theorem on schlicht functions, Duke Math. J. 30 (1963), 63-80. (1963) Zbl0112.37702MR0143921
  9. Mitchell, A. R., Wait, R., The Finite Element Method in Partial Differential Equations, John Wiley & Sons London (1977). (1977) Zbl0344.35001MR0483547
  10. Strang, G., Fix, G. J., An Analysis of the Finite Element Method, Prentice Hall Englewood Cliffs (1973). (1973) Zbl0356.65096MR0443377
  11. Yuan, K. Y., Huang, Y. S., Yang, T., Pian, T. H. H., 10.1007/BF00350284, Comput. Mech. 14 (1994), 189-199. (1994) Zbl0804.65103MR1279009DOI10.1007/BF00350284

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.