The invertibility of the isoparametric mappings for triangular quadratic Lagrange finite elements
Applications of Mathematics (2012)
- Volume: 57, Issue: 5, page 445-462
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDalík, Josef. "The invertibility of the isoparametric mappings for triangular quadratic Lagrange finite elements." Applications of Mathematics 57.5 (2012): 445-462. <http://eudml.org/doc/247048>.
@article{Dalík2012,
abstract = {A reference triangular quadratic Lagrange finite element consists of a right triangle $\hat\{K\}$ with unit legs $S_1$, $S_2$, a local space $\hat\{\mathcal \{L\}\}$ of quadratic polynomials on $\hat\{K\}$ and of parameters relating the values in the vertices and midpoints of sides of $\hat\{K\}$ to every function from $\hat\{\mathcal \{L\}\}$. Any isoparametric triangular quadratic Lagrange finite element is determined by an invertible isoparametric mapping $\{\mathcal \{F\}\}_h=(F_1,F_2)\in \hat\{\mathcal \{L\}\}\times \hat\{\mathcal \{L\}\}$. We explicitly describe such invertible isoparametric mappings $\{\mathcal \{F\}\}_h$ for which the images $\{\mathcal \{F\}\}_h(S_1)$, $\{\mathcal \{F\}\}_h(S_2)$ of the segments $S_1$, $S_2$ are segments, too. In this way we extend the well-known result going back to W. B. Jordan, 1970, characterizing those invertible isoparametric mappings whose restrictions to the segments $S_1$ and $S_2$ are linear.},
author = {Dalík, Josef},
journal = {Applications of Mathematics},
keywords = {isoparametric triangular quadratic Lagrange finite element; invertible isoparametric mapping; initial or boundary value problems; isoparametric triangular quadratic Lagrange finite element; invertible isoparametric mapping; initial or boundary value problems},
language = {eng},
number = {5},
pages = {445-462},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The invertibility of the isoparametric mappings for triangular quadratic Lagrange finite elements},
url = {http://eudml.org/doc/247048},
volume = {57},
year = {2012},
}
TY - JOUR
AU - Dalík, Josef
TI - The invertibility of the isoparametric mappings for triangular quadratic Lagrange finite elements
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 5
SP - 445
EP - 462
AB - A reference triangular quadratic Lagrange finite element consists of a right triangle $\hat{K}$ with unit legs $S_1$, $S_2$, a local space $\hat{\mathcal {L}}$ of quadratic polynomials on $\hat{K}$ and of parameters relating the values in the vertices and midpoints of sides of $\hat{K}$ to every function from $\hat{\mathcal {L}}$. Any isoparametric triangular quadratic Lagrange finite element is determined by an invertible isoparametric mapping ${\mathcal {F}}_h=(F_1,F_2)\in \hat{\mathcal {L}}\times \hat{\mathcal {L}}$. We explicitly describe such invertible isoparametric mappings ${\mathcal {F}}_h$ for which the images ${\mathcal {F}}_h(S_1)$, ${\mathcal {F}}_h(S_2)$ of the segments $S_1$, $S_2$ are segments, too. In this way we extend the well-known result going back to W. B. Jordan, 1970, characterizing those invertible isoparametric mappings whose restrictions to the segments $S_1$ and $S_2$ are linear.
LA - eng
KW - isoparametric triangular quadratic Lagrange finite element; invertible isoparametric mapping; initial or boundary value problems; isoparametric triangular quadratic Lagrange finite element; invertible isoparametric mapping; initial or boundary value problems
UR - http://eudml.org/doc/247048
ER -
References
top- Barrett, K. E., 10.1002/(SICI)1099-0887(199611)12:11<755::AID-CNM15>3.0.CO;2-S, Commun. Numer. Methods Eng. 12 (1996), 755-766. (1996) Zbl0862.73057DOI10.1002/(SICI)1099-0887(199611)12:11<755::AID-CNM15>3.0.CO;2-S
- Ciarlet, P. G., The Finite Element Method for Elliptic Problems, SIAM Philadelphia (2002). (2002) MR1930132
- Jordan, W. B., A.E.C. Research and Development Report KAPL-M-7112, (1970). (1970)
- Knabner, P., Korotov, S., Summ, G., 10.1016/S0168-874X(02)00196-8, Finite Elem. Anal. Des. 40 (2003), 159-172 2014327. (2003) MR2014327DOI10.1016/S0168-874X(02)00196-8
- Knabner, P., Summ, G., 10.1007/PL00005454, Numer. Math. 88 (2001), 661-681. (2001) Zbl0989.65133MR1836875DOI10.1007/PL00005454
- Křížek, M., Neittaanmäki, P., Finite Element Approximation of Variational Problems and Applications, Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1990). (1990) MR1066462
- Lautersztajn-S, N., Samuelsson, A., 10.1002/(SICI)1099-0887(199802)14:2<87::AID-CNM128>3.0.CO;2-A, Commun. Numer. Methods Eng. 14 (1998), 87-101. (1998) Zbl0947.74064MR1610166DOI10.1002/(SICI)1099-0887(199802)14:2<87::AID-CNM128>3.0.CO;2-A
- Meisters, G. H., Olech, C., Locally one-to-one mappings and a classical theorem on schlicht functions, Duke Math. J. 30 (1963), 63-80. (1963) Zbl0112.37702MR0143921
- Mitchell, A. R., Wait, R., The Finite Element Method in Partial Differential Equations, John Wiley & Sons London (1977). (1977) Zbl0344.35001MR0483547
- Strang, G., Fix, G. J., An Analysis of the Finite Element Method, Prentice Hall Englewood Cliffs (1973). (1973) Zbl0356.65096MR0443377
- Yuan, K. Y., Huang, Y. S., Yang, T., Pian, T. H. H., 10.1007/BF00350284, Comput. Mech. 14 (1994), 189-199. (1994) Zbl0804.65103MR1279009DOI10.1007/BF00350284
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.