On a class of m -point boundary value problems

Rodica Luca

Mathematica Bohemica (2012)

  • Volume: 137, Issue: 2, page 187-194
  • ISSN: 0862-7959

Abstract

top
We investigate the existence of positive solutions for a nonlinear second-order differential system subject to some m -point boundary conditions. The nonexistence of positive solutions is also studied.

How to cite

top

Luca, Rodica. "On a class of $m$-point boundary value problems." Mathematica Bohemica 137.2 (2012): 187-194. <http://eudml.org/doc/247057>.

@article{Luca2012,
abstract = {We investigate the existence of positive solutions for a nonlinear second-order differential system subject to some $m$-point boundary conditions. The nonexistence of positive solutions is also studied.},
author = {Luca, Rodica},
journal = {Mathematica Bohemica},
keywords = {differential system; boundary condition; positive solution; fixed point theorem; nonlinear differential system; multipoint boundary condition; positive solution; fixed point theorem},
language = {eng},
number = {2},
pages = {187-194},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a class of $m$-point boundary value problems},
url = {http://eudml.org/doc/247057},
volume = {137},
year = {2012},
}

TY - JOUR
AU - Luca, Rodica
TI - On a class of $m$-point boundary value problems
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 2
SP - 187
EP - 194
AB - We investigate the existence of positive solutions for a nonlinear second-order differential system subject to some $m$-point boundary conditions. The nonexistence of positive solutions is also studied.
LA - eng
KW - differential system; boundary condition; positive solution; fixed point theorem; nonlinear differential system; multipoint boundary condition; positive solution; fixed point theorem
UR - http://eudml.org/doc/247057
ER -

References

top
  1. Anderson, D. R., 10.1080/1023619021000000717, J. Differ. Equ. Appl. 8 (2002), 673-688. (2002) Zbl1021.34011MR1914597DOI10.1080/1023619021000000717
  2. Anderson, D. R., 10.1016/j.aml.2004.07.008, Appl. Math. Lett. 17 (2004), 1053-1059. (2004) Zbl1061.34008MR2087754DOI10.1016/j.aml.2004.07.008
  3. Avery, R., Three positive solutions of a discrete second order conjugate problem, Panam. Math. J. 8 (1998), 79-96. (1998) Zbl0958.39024MR1620423
  4. Boucherif, A., 10.1016/j.na.2007.12.007, Nonlinear Anal., Theory Methods Appl. 70 (2009), 364-371. (2009) Zbl1169.34310MR2468243DOI10.1016/j.na.2007.12.007
  5. Cheung, W. S., Ren, J., Positive solution for discrete three-point boundary value problems, Aust. J. Math. Anal. Appl. 1 (2004), 7 p. (2004) Zbl1079.39004MR2111260
  6. Ge, W., Xue, C., 10.1016/j.na.2007.11.040, Nonlinear Anal., Theory Methods Appl. 70 (2009), 16-31. (2009) MR2468215DOI10.1016/j.na.2007.11.040
  7. Guo, Y., Shan, W., Ge, W., 10.1016/S0377-0427(02)00739-2, J. Comput. Appl. Math. 151 (2003), 415-424. (2003) Zbl1026.34016MR1956792DOI10.1016/S0377-0427(02)00739-2
  8. Henderson, J., Ntouyas, S. K., Positive solutions for systems of nonlinear boundary value problems, Nonlinear Stud. 15 (2008), 51-60. (2008) Zbl1148.34016MR2391312
  9. Henderson, J., Ntouyas, S. K., Positive solutions for systems of three-point nonlinear boundary value problems, Austr. J. Math. Anal. Appl. 5 (2008), 1-9. (2008) Zbl1177.34032MR2413225
  10. Henderson, J., Ntouyas, S. K., Purnaras, I. K., Positive solutions for systems of three-point nonlinear discrete boundary value problems, Neural Parallel Sci. Comput. 16 (2008), 209-224. (2008) Zbl1153.39014MR2436487
  11. Il'in, V. A., Moiseev, E. I., Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite-difference aspects, Differ. Equ. 23 (1987), 803-811. (1987) 
  12. Li, W. T., Sun, H. R., 10.1007/s10114-005-0748-5, Acta Math. Sin., Engl. Ser. 22 (2006), 1797-1804. (2006) MR2262439DOI10.1007/s10114-005-0748-5
  13. Luca, R., Positive solutions for a second-order m -point boundary value problem, Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 18 (2011), 161-176. (2011) Zbl1216.34022MR2768127
  14. Ma, R., 10.1016/S0893-9659(00)00102-6, Appl. Math. Lett. 14 (2001), 1-5. (2001) Zbl0989.34009MR1793693DOI10.1016/S0893-9659(00)00102-6
  15. Ma, R., Raffoul, Y., 10.1080/1023619031000114323, J. Difference Equ. Appl. 10 (2004), 129-138. (2004) Zbl1056.39024MR2033338DOI10.1080/1023619031000114323
  16. Ntouyas, S. K., Nonlocal initial and boundary value problems: a survey, Handbook of Differential Equations: Ordinary Differential Equations, Vol. II, Elsevier, Amsterdam 461-557 (2005). (2005) Zbl1098.34011MR2182761
  17. Sun, H. R., Li, W. T., 10.1016/j.jmaa.2004.03.079, J. Math. Anal. Appl. 299 (2004), 508-524. (2004) MR2098256DOI10.1016/j.jmaa.2004.03.079

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.