On a class of -point boundary value problems
Mathematica Bohemica (2012)
- Volume: 137, Issue: 2, page 187-194
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topLuca, Rodica. "On a class of $m$-point boundary value problems." Mathematica Bohemica 137.2 (2012): 187-194. <http://eudml.org/doc/247057>.
@article{Luca2012,
abstract = {We investigate the existence of positive solutions for a nonlinear second-order differential system subject to some $m$-point boundary conditions. The nonexistence of positive solutions is also studied.},
author = {Luca, Rodica},
journal = {Mathematica Bohemica},
keywords = {differential system; boundary condition; positive solution; fixed point theorem; nonlinear differential system; multipoint boundary condition; positive solution; fixed point theorem},
language = {eng},
number = {2},
pages = {187-194},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a class of $m$-point boundary value problems},
url = {http://eudml.org/doc/247057},
volume = {137},
year = {2012},
}
TY - JOUR
AU - Luca, Rodica
TI - On a class of $m$-point boundary value problems
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 2
SP - 187
EP - 194
AB - We investigate the existence of positive solutions for a nonlinear second-order differential system subject to some $m$-point boundary conditions. The nonexistence of positive solutions is also studied.
LA - eng
KW - differential system; boundary condition; positive solution; fixed point theorem; nonlinear differential system; multipoint boundary condition; positive solution; fixed point theorem
UR - http://eudml.org/doc/247057
ER -
References
top- Anderson, D. R., 10.1080/1023619021000000717, J. Differ. Equ. Appl. 8 (2002), 673-688. (2002) Zbl1021.34011MR1914597DOI10.1080/1023619021000000717
- Anderson, D. R., 10.1016/j.aml.2004.07.008, Appl. Math. Lett. 17 (2004), 1053-1059. (2004) Zbl1061.34008MR2087754DOI10.1016/j.aml.2004.07.008
- Avery, R., Three positive solutions of a discrete second order conjugate problem, Panam. Math. J. 8 (1998), 79-96. (1998) Zbl0958.39024MR1620423
- Boucherif, A., 10.1016/j.na.2007.12.007, Nonlinear Anal., Theory Methods Appl. 70 (2009), 364-371. (2009) Zbl1169.34310MR2468243DOI10.1016/j.na.2007.12.007
- Cheung, W. S., Ren, J., Positive solution for discrete three-point boundary value problems, Aust. J. Math. Anal. Appl. 1 (2004), 7 p. (2004) Zbl1079.39004MR2111260
- Ge, W., Xue, C., 10.1016/j.na.2007.11.040, Nonlinear Anal., Theory Methods Appl. 70 (2009), 16-31. (2009) MR2468215DOI10.1016/j.na.2007.11.040
- Guo, Y., Shan, W., Ge, W., 10.1016/S0377-0427(02)00739-2, J. Comput. Appl. Math. 151 (2003), 415-424. (2003) Zbl1026.34016MR1956792DOI10.1016/S0377-0427(02)00739-2
- Henderson, J., Ntouyas, S. K., Positive solutions for systems of nonlinear boundary value problems, Nonlinear Stud. 15 (2008), 51-60. (2008) Zbl1148.34016MR2391312
- Henderson, J., Ntouyas, S. K., Positive solutions for systems of three-point nonlinear boundary value problems, Austr. J. Math. Anal. Appl. 5 (2008), 1-9. (2008) Zbl1177.34032MR2413225
- Henderson, J., Ntouyas, S. K., Purnaras, I. K., Positive solutions for systems of three-point nonlinear discrete boundary value problems, Neural Parallel Sci. Comput. 16 (2008), 209-224. (2008) Zbl1153.39014MR2436487
- Il'in, V. A., Moiseev, E. I., Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite-difference aspects, Differ. Equ. 23 (1987), 803-811. (1987)
- Li, W. T., Sun, H. R., 10.1007/s10114-005-0748-5, Acta Math. Sin., Engl. Ser. 22 (2006), 1797-1804. (2006) MR2262439DOI10.1007/s10114-005-0748-5
- Luca, R., Positive solutions for a second-order -point boundary value problem, Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 18 (2011), 161-176. (2011) Zbl1216.34022MR2768127
- Ma, R., 10.1016/S0893-9659(00)00102-6, Appl. Math. Lett. 14 (2001), 1-5. (2001) Zbl0989.34009MR1793693DOI10.1016/S0893-9659(00)00102-6
- Ma, R., Raffoul, Y., 10.1080/1023619031000114323, J. Difference Equ. Appl. 10 (2004), 129-138. (2004) Zbl1056.39024MR2033338DOI10.1080/1023619031000114323
- Ntouyas, S. K., Nonlocal initial and boundary value problems: a survey, Handbook of Differential Equations: Ordinary Differential Equations, Vol. II, Elsevier, Amsterdam 461-557 (2005). (2005) Zbl1098.34011MR2182761
- Sun, H. R., Li, W. T., 10.1016/j.jmaa.2004.03.079, J. Math. Anal. Appl. 299 (2004), 508-524. (2004) MR2098256DOI10.1016/j.jmaa.2004.03.079
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.