Mean-value theorem for vector-valued functions
Mathematica Bohemica (2012)
- Volume: 137, Issue: 4, page 415-423
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMatkowski, Janusz. "Mean-value theorem for vector-valued functions." Mathematica Bohemica 137.4 (2012): 415-423. <http://eudml.org/doc/247065>.
@article{Matkowski2012,
abstract = {For a differentiable function $\{\bf f\}\colon I\rightarrow \mathbb \{R\}^\{k\},$ where $I$ is a real interval and $k\in \mathbb \{N\}$, a counterpart of the Lagrange mean-value theorem is presented. Necessary and sufficient conditions for the existence of a mean $M\colon I^\{2\}\rightarrow I$ such that\[ \{\bf f\}(x)-\{\bf f\}( y) =( x-y) \{\bf f\}^\{\prime \}( M(x,y)) ,\quad x,y\in I, \]
are given. Similar considerations for a theorem accompanying the Lagrange mean-value theorem are presented.},
author = {Matkowski, Janusz},
journal = {Mathematica Bohemica},
keywords = {Lagrange mean-value theorem; mean; Darboux property of derivative; vector-valued function; Lagrange mean-value theorem; Darboux property},
language = {eng},
number = {4},
pages = {415-423},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Mean-value theorem for vector-valued functions},
url = {http://eudml.org/doc/247065},
volume = {137},
year = {2012},
}
TY - JOUR
AU - Matkowski, Janusz
TI - Mean-value theorem for vector-valued functions
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 4
SP - 415
EP - 423
AB - For a differentiable function ${\bf f}\colon I\rightarrow \mathbb {R}^{k},$ where $I$ is a real interval and $k\in \mathbb {N}$, a counterpart of the Lagrange mean-value theorem is presented. Necessary and sufficient conditions for the existence of a mean $M\colon I^{2}\rightarrow I$ such that\[ {\bf f}(x)-{\bf f}( y) =( x-y) {\bf f}^{\prime }( M(x,y)) ,\quad x,y\in I, \]
are given. Similar considerations for a theorem accompanying the Lagrange mean-value theorem are presented.
LA - eng
KW - Lagrange mean-value theorem; mean; Darboux property of derivative; vector-valued function; Lagrange mean-value theorem; Darboux property
UR - http://eudml.org/doc/247065
ER -
References
top- Berrone, L. R., Moro, J., 10.1007/s000100050031, Aequationes Math. 55 (1998), 217-226. (1998) Zbl0903.39006MR1615392DOI10.1007/s000100050031
- Matkowski, J., 10.1007/s000100050006, Aequationes Math. 58 (1999), 46-59. (1999) MR1714318DOI10.1007/s000100050006
- Matkowski, J., 10.1016/j.jmaa.2010.06.057, J. Math. Anal. Appl. 373 (2011), 227-234. (2011) Zbl1206.26032MR2684472DOI10.1016/j.jmaa.2010.06.057
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.