Instanton-anti-instanton solutions of discrete Yang-Mills equations
Mathematica Bohemica (2012)
- Volume: 137, Issue: 2, page 219-228
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topReferences
top- Atiyah, M. F., Geometry of Yang-Mills Fields, Lezione Fermiane, Scuola Normale Superiore, Pisa (1979). (1979) Zbl0435.58001MR0554924
- Dezin, A. A., Multidimensional Analysis and Discrete Models, CRC Press, Boca Raton (1995). (1995) Zbl0851.39008MR1397027
- Dezin, A. A., Models generated by the Yang-Mills equations, Differ. Uravn. 29 (1993), 846-851; English translation in Differ. Equ. 29 (1993), 724-728. (1993) MR1250743
- Freed, D., Uhlenbeck, K., Instantons and Four-Manifolds, Springer, New York (1984). (1984) Zbl0559.57001MR0757358
- Nash, C., Sen, S., Topology and Geometry for Physicists, Acad. Press, London (1989). (1989) MR0776042
- Sushch, V., Gauge-invariant discrete models of Yang-Mills equations, Mat. Zametki. 61 (1997), 742-754; English translation in Math. Notes. 61 (1997), 621-631. (1997) Zbl0935.53017MR1620141
- Sushch, V., Discrete model of Yang-Mills equations in Minkowski space, Cubo A Math. Journal. 6 (2004), 35-50. (2004) Zbl1081.81082MR2092042
- Sushch, V., A gauge-invariant discrete analog of the Yang-Mills equations on a double complex, Cubo A Math. Journal. 8 (2006), 61-78. (2006) Zbl1139.81375MR2287294