Global classical solutions to a kind of mixed initial-boundary value problem for inhomogeneous quasilinear hyperbolic systems

Yong-Fu Yang

Applications of Mathematics (2012)

  • Volume: 57, Issue: 3, page 231-261
  • ISSN: 0862-7940

Abstract

top
In this paper, the mixed initial-boundary value problem for inhomogeneous quasilinear strictly hyperbolic systems with nonlinear boundary conditions in the first quadrant { ( t , x ) : t 0 , x 0 } is investigated. Under the assumption that the right-hand side satisfies a matching condition and the system is strictly hyperbolic and weakly linearly degenerate, we obtain the global existence and uniqueness of a C 1 solution and its L 1 stability with certain small initial and boundary data.

How to cite

top

Yang, Yong-Fu. "Global classical solutions to a kind of mixed initial-boundary value problem for inhomogeneous quasilinear hyperbolic systems." Applications of Mathematics 57.3 (2012): 231-261. <http://eudml.org/doc/247103>.

@article{Yang2012,
abstract = {In this paper, the mixed initial-boundary value problem for inhomogeneous quasilinear strictly hyperbolic systems with nonlinear boundary conditions in the first quadrant $\lbrace (t,x)\colon t \ge 0, x \ge 0\rbrace $ is investigated. Under the assumption that the right-hand side satisfies a matching condition and the system is strictly hyperbolic and weakly linearly degenerate, we obtain the global existence and uniqueness of a $C^1$ solution and its $L^1$ stability with certain small initial and boundary data.},
author = {Yang, Yong-Fu},
journal = {Applications of Mathematics},
keywords = {quasilinear hyperbolic system; mixed initial-boundary value problem; global classical solution; weak linear degeneracy; matching conditon; quasilinear hyperbolic system; mixed initial-boundary value problem; global classical solution; weak linear degeneracy; matching condition},
language = {eng},
number = {3},
pages = {231-261},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global classical solutions to a kind of mixed initial-boundary value problem for inhomogeneous quasilinear hyperbolic systems},
url = {http://eudml.org/doc/247103},
volume = {57},
year = {2012},
}

TY - JOUR
AU - Yang, Yong-Fu
TI - Global classical solutions to a kind of mixed initial-boundary value problem for inhomogeneous quasilinear hyperbolic systems
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 3
SP - 231
EP - 261
AB - In this paper, the mixed initial-boundary value problem for inhomogeneous quasilinear strictly hyperbolic systems with nonlinear boundary conditions in the first quadrant $\lbrace (t,x)\colon t \ge 0, x \ge 0\rbrace $ is investigated. Under the assumption that the right-hand side satisfies a matching condition and the system is strictly hyperbolic and weakly linearly degenerate, we obtain the global existence and uniqueness of a $C^1$ solution and its $L^1$ stability with certain small initial and boundary data.
LA - eng
KW - quasilinear hyperbolic system; mixed initial-boundary value problem; global classical solution; weak linear degeneracy; matching conditon; quasilinear hyperbolic system; mixed initial-boundary value problem; global classical solution; weak linear degeneracy; matching condition
UR - http://eudml.org/doc/247103
ER -

References

top
  1. Bressan, A., 10.1512/iumj.1988.37.37021, Indiana Univ. Math. J. 37 (1988), 409-420. (1988) Zbl0632.35041MR0963510DOI10.1512/iumj.1988.37.37021
  2. Bressan, A., Liu, T.-P., Yang, T., 10.1007/s002050050165, Arch. Ration. Mech. Anal. 149 (1999), 1-22. (1999) MR1723032DOI10.1007/s002050050165
  3. Chen, Y. L., Global classical solution of the mixed initial-boundary value problem for a kind of the first order quasilinear hyperbolic system, J. Fudan Univ. Nat. Sci. 45 (2006), 625-631. (2006) MR2273247
  4. Greenberg, J. M., Li, T.-T., 10.1016/0022-0396(84)90135-9, J. Differ. Equations 52 (1984), 66-75. (1984) Zbl0576.35080MR0737964DOI10.1016/0022-0396(84)90135-9
  5. Hörmander, L., The lifespan of classical solutions of nonlinear hyperbolic equations, Lecture Notes Math. 1256 Springer Berlin (1987), 214-280. (1987) Zbl0632.35045MR0897781
  6. John, F., 10.1002/cpa.3160270307, Commun. Pure Appl. Math. 27 (1974), 377-405. (1974) Zbl0302.35064MR0369934DOI10.1002/cpa.3160270307
  7. Kong, D. X., Cauchy problem for first order quasilinear hyperbolic systems, J. Fudan Univ. Nat. Sci. 33 (1994), 705-708. (1994) Zbl0938.35573MR1341024
  8. Li, S. M., Cauchy problem for general first order inhomogeneous quasilinear hyperbolic systems, J. Partial Differ. Equations 15 (2002), 46-68. (2002) Zbl1002.35081MR1892623
  9. Li, T.-T., Global Classical Solutions for Quasilinear Hperbolic Systems, Masson/John Wiley Paris/Chichester (1994). (1994) MR1291392
  10. Li, T.-T., Peng, Y.-J., 10.1016/S0362-546X(02)00123-2, Nonlinear Anal., Theory Methods Appl. 52 (2003), 573-583. (2003) Zbl1027.35065MR1937641DOI10.1016/S0362-546X(02)00123-2
  11. Li, T.-T., Peng, Y.-J., Global C 1 solution to the initial-boundary value problem for diagonal hyperbolic systems with linearly degenerate characteristics, J. Partial Differ. Equations 16 (2003), 8-17. (2003) Zbl1045.35043MR1995402
  12. Li, T.-T., Wang, L. B., 10.3934/dcds.2005.12.59, Discrete Contin. Dyn. Syst. 12 (2005), 59-78. (2005) Zbl1067.35044MR2121249DOI10.3934/dcds.2005.12.59
  13. Li, T.-T., Yu, W.-C., Boundary Value Problems for Quasilinear Hyperbolic Systems, Series V, Duke University, Mathematical Department Durham (1985). (1985) 
  14. Li, T.-T., Zhou, Y., Kong, D.-X., 10.1080/03605309408821055, Commun. Partial Differ. Equations 19 (1994), 1263-1317. (1994) Zbl0810.35054MR1284811DOI10.1080/03605309408821055
  15. Li, T.-T., Zhou, Y., Kong, D.-X., Global classical solutions for general quasilinear hyperbolic systems with decay initial data, Nonlinear Anal., Theory Methods Appl. 28 (1997), 1299-1232. (1997) Zbl0874.35068MR1428653
  16. Liu, T.-P., 10.1016/0022-0396(79)90082-2, J. Differ. Equations 33 (1979), 92-111. (1979) MR0540819DOI10.1016/0022-0396(79)90082-2
  17. Liu, T.-P., Yang, T., 10.1002/(SICI)1097-0312(199912)52:12<1553::AID-CPA3>3.0.CO;2-S, Commun. Pure Appl. Math. 52 (1999), 1553-1586. (1999) Zbl1034.35073MR1711037DOI10.1002/(SICI)1097-0312(199912)52:12<1553::AID-CPA3>3.0.CO;2-S
  18. Qin, T. H., Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems, Chin. Ann. Math., Ser. B 6 (1985), 289-298. (1985) Zbl0584.35068MR0842971
  19. Wu, P.-X., Global classical solutions to the Cauchy problem for general first order inhomogeneous quasilinear hyperbolic systems, Chin. Ann. Math., Ser. A 27 (2006), 93-108 Chinese. (2006) Zbl1097.35099MR2208263
  20. Zhou, Y., 10.1142/S0252959904000044, Chin. Ann. Math., Ser. B 25 (2004), 37-56. (2004) Zbl1059.35078MR2033949DOI10.1142/S0252959904000044
  21. Zhou, Y., Yang, Y.-F., 10.1016/j.na.2010.04.057, Nonlinear Anal., Theory Methods Appl. 73 (2010), 1543-1561. (2010) Zbl1195.35205MR2661340DOI10.1016/j.na.2010.04.057

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.