Exponents for three-dimensional simultaneous Diophantine approximations

Nikolay Moshchevitin

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 1, page 127-137
  • ISSN: 0011-4642

Abstract

top
Let Θ = ( θ 1 , θ 2 , θ 3 ) 3 . Suppose that 1 , θ 1 , θ 2 , θ 3 are linearly independent over . For Diophantine exponents α ( Θ ) = sup { γ > 0 : lim sup t + t γ ψ Θ ( t ) < + } , β ( Θ ) = sup { γ > 0 : lim inf t + t γ ψ Θ ( t ) < + } we prove β ( Θ ) 1 2 α ( Θ ) 1 - α ( Θ ) + α ( Θ ) 1 - α ( Θ ) 2 + 4 α ( Θ ) 1 - α ( Θ ) α ( Θ ) .

How to cite

top

Moshchevitin, Nikolay. "Exponents for three-dimensional simultaneous Diophantine approximations." Czechoslovak Mathematical Journal 62.1 (2012): 127-137. <http://eudml.org/doc/247147>.

@article{Moshchevitin2012,
abstract = {Let $\Theta = (\theta _1,\theta _2,\theta _3)\in \mathbb \{R\}^3$. Suppose that $1,\theta _1,\theta _2,\theta _3$ are linearly independent over $\mathbb \{Z\}$. For Diophantine exponents \[ \begin\{aligned\} \alpha (\Theta ) &= \sup \lbrace \gamma >0\colon \limsup \_\{t\rightarrow +\infty \} t^\gamma \psi \_\Theta (t) <+\infty \rbrace ,\\ \beta (\Theta ) &= \sup \lbrace \gamma >0\colon \liminf \_\{t\rightarrow +\infty \} t^\gamma \psi \_\Theta (t)<+\infty \rbrace \end\{aligned\} \] we prove \[ \beta (\Theta ) \ge \frac\{1\}\{2\} \Bigg ( \frac\{\alpha (\Theta )\}\{1-\alpha (\Theta )\} +\sqrt\{\Big (\frac\{\alpha (\Theta )\}\{1-\alpha (\Theta )\} \Big )^2 +\frac\{4\alpha (\Theta )\}\{1-\alpha (\Theta )\}\} \Bigg ) \alpha (\Theta ). \]},
author = {Moshchevitin, Nikolay},
journal = {Czechoslovak Mathematical Journal},
keywords = {Diophantine approximations; Diophantine exponents; Jarník's transference principle; Diophantine approximations; Diophantine exponent},
language = {eng},
number = {1},
pages = {127-137},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Exponents for three-dimensional simultaneous Diophantine approximations},
url = {http://eudml.org/doc/247147},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Moshchevitin, Nikolay
TI - Exponents for three-dimensional simultaneous Diophantine approximations
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 127
EP - 137
AB - Let $\Theta = (\theta _1,\theta _2,\theta _3)\in \mathbb {R}^3$. Suppose that $1,\theta _1,\theta _2,\theta _3$ are linearly independent over $\mathbb {Z}$. For Diophantine exponents \[ \begin{aligned} \alpha (\Theta ) &= \sup \lbrace \gamma >0\colon \limsup _{t\rightarrow +\infty } t^\gamma \psi _\Theta (t) <+\infty \rbrace ,\\ \beta (\Theta ) &= \sup \lbrace \gamma >0\colon \liminf _{t\rightarrow +\infty } t^\gamma \psi _\Theta (t)<+\infty \rbrace \end{aligned} \] we prove \[ \beta (\Theta ) \ge \frac{1}{2} \Bigg ( \frac{\alpha (\Theta )}{1-\alpha (\Theta )} +\sqrt{\Big (\frac{\alpha (\Theta )}{1-\alpha (\Theta )} \Big )^2 +\frac{4\alpha (\Theta )}{1-\alpha (\Theta )}} \Bigg ) \alpha (\Theta ). \]
LA - eng
KW - Diophantine approximations; Diophantine exponents; Jarník's transference principle; Diophantine approximations; Diophantine exponent
UR - http://eudml.org/doc/247147
ER -

References

top
  1. Jarník, V., Contribution à la théorie des approximations diophantiennes linéaires et homogènes, Czech. Math. J. 4 (1954), 330-353 Russian, French summary. (1954) Zbl0057.28303MR0072183
  2. Laurent, M., 10.4153/CJM-2009-008-2, Can. J. Math. 61 (2009), 165-189. (2009) MR2488454DOI10.4153/CJM-2009-008-2
  3. Moshchevitin, N. G., Contribution to Vojtěch Jarník, Preprint available at arXiv:0912.2442v3. MR0095106
  4. Moshchevitin, N. G., 10.1070/RM2010v065n03ABEH004680, Russ. Math. Surv. 65 433-511 (2010), Translation from Uspekhi Mat. Nauk. 65 43-126 (2010). (2010) Zbl1225.11094MR2682720DOI10.1070/RM2010v065n03ABEH004680
  5. Schmidt, W. M., 10.2307/1970352, Ann. Math. (2) 85 (1967), 430-472. (1967) Zbl0152.03602MR0213301DOI10.2307/1970352

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.