Existence of global solutions to differential inclusions; a priori bounds
Ovidiu Cârjă; Alina Ilinca Lazu
Mathematica Bohemica (2012)
- Volume: 137, Issue: 2, page 195-200
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topCârjă, Ovidiu, and Lazu, Alina Ilinca. "Existence of global solutions to differential inclusions; a priori bounds." Mathematica Bohemica 137.2 (2012): 195-200. <http://eudml.org/doc/247165>.
@article{Cârjă2012,
abstract = {The paper presents an existence result for global solutions to the finite dimensional differential inclusion $y^\{\prime \} \in F( y) ,$$F$ being defined on a closed set $K.$ A priori bounds for such solutions are provided.},
author = {Cârjă, Ovidiu, Lazu, Alina Ilinca},
journal = {Mathematica Bohemica},
keywords = {differential inclusion; global solution; a priori bound; differential inclusion; global solution; a priori bound},
language = {eng},
number = {2},
pages = {195-200},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of global solutions to differential inclusions; a priori bounds},
url = {http://eudml.org/doc/247165},
volume = {137},
year = {2012},
}
TY - JOUR
AU - Cârjă, Ovidiu
AU - Lazu, Alina Ilinca
TI - Existence of global solutions to differential inclusions; a priori bounds
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 2
SP - 195
EP - 200
AB - The paper presents an existence result for global solutions to the finite dimensional differential inclusion $y^{\prime } \in F( y) ,$$F$ being defined on a closed set $K.$ A priori bounds for such solutions are provided.
LA - eng
KW - differential inclusion; global solution; a priori bound; differential inclusion; global solution; a priori bound
UR - http://eudml.org/doc/247165
ER -
References
top- Aubin, J. P., Frankowska, H., Set-Valued Analysis, Birkhäuser, Boston (1990). (1990) Zbl0713.49021MR1048347
- Cârjă, O., Lazu, A., 10.1016/j.na.2008.11.022, Nonlinear Anal., Theory Methods Appl. 71 (2009), 1012-1018. (2009) Zbl1173.37009MR2527520DOI10.1016/j.na.2008.11.022
- Cârjă, O., Motreanu, D., Characterization of Lyapunov pairs in the nonlinear case and applications, Nonlinear Anal., Theory Methods Appl. 70 (2009), 352-363. (2009) Zbl1172.34039MR2468242
- Cârjă, O., Necula, M., Vrabie, I. I., Viability, Invariance and Applications, North-Holland Mathematics Studies 207, Elsevier, Amsterdam (2007). (2007) Zbl1239.34068MR2488820
- Clarke, F. H., Ledyaev, Yu. S., Stern, R. J., Wolenski, P. R., Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics 178, Springer, New York (1998). (1998) Zbl1047.49500MR1488695
- Fattorini, H. O., Infinite Dimensional Optimization and Control Theory, Encyclopedia of Mathematics and Its Applications 62, Cambridge University Press, Cambridge (1999). (1999) Zbl0931.49001MR1669395
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.