Periodic solutions for -th order delay differential equations with damping terms
Archivum Mathematicum (2011)
- Volume: 047, Issue: 4, page 263-278
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topPan, Lijun. "Periodic solutions for $n$-th order delay differential equations with damping terms." Archivum Mathematicum 047.4 (2011): 263-278. <http://eudml.org/doc/247173>.
@article{Pan2011,
abstract = {By using the coincidence degree theory of Mawhin, we study the existence of periodic solutions for $n$ th order delay differential equations with damping terms $x^\{(n)\}(t)=\sum \limits ^\{s\}_\{i=1\}b_\{i\}[x^\{(i)\}(t)]^\{2k-1\}+ f(x(t-\tau (t)))+p(t)$. Some new results on the existence of periodic solutions of the investigated equation are obtained.},
author = {Pan, Lijun},
journal = {Archivum Mathematicum},
keywords = {delay differential equations; periodic solution; coincidence degree; delay differential equation; periodic solution; coincidence degree},
language = {eng},
number = {4},
pages = {263-278},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Periodic solutions for $n$-th order delay differential equations with damping terms},
url = {http://eudml.org/doc/247173},
volume = {047},
year = {2011},
}
TY - JOUR
AU - Pan, Lijun
TI - Periodic solutions for $n$-th order delay differential equations with damping terms
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 4
SP - 263
EP - 278
AB - By using the coincidence degree theory of Mawhin, we study the existence of periodic solutions for $n$ th order delay differential equations with damping terms $x^{(n)}(t)=\sum \limits ^{s}_{i=1}b_{i}[x^{(i)}(t)]^{2k-1}+ f(x(t-\tau (t)))+p(t)$. Some new results on the existence of periodic solutions of the investigated equation are obtained.
LA - eng
KW - delay differential equations; periodic solution; coincidence degree; delay differential equation; periodic solution; coincidence degree
UR - http://eudml.org/doc/247173
ER -
References
top- Chen, X. R., Pan, L. J., Existence of periodic solutions for th order differential equations with deviating argument, Int. J. Pure. Appl. Math. 55 (2009), 319–333. (2009) Zbl1185.34092MR2561457
- Cong, F., 10.1016/S0362-546X(97)00517-8, Nonlinear Anal. 32 (1998), 787–793. (1998) MR1612146DOI10.1016/S0362-546X(97)00517-8
- Cong, F., 10.1016/S0893-9659(04)90112-7, Appl. Math. Lett. 17 (2004), 727–732. (2004) MR2064187DOI10.1016/S0893-9659(04)90112-7
- Cong, F., Huang, Q. D., Shi, S. Y., 10.1006/jmaa.1999.6471, J. Math. Anal. Appl. 241 (2000), 1–9. (2000) MR1738328DOI10.1006/jmaa.1999.6471
- Ezeilo, J. O. C., On the existence of periodic solutions of a certain third–order differential equation, Proc. Cambridge Philos. Soc. 56 (1960), 381–389. (1960) Zbl0097.29404MR0121539
- Fabry, C., Mawhin, J., Nkashama, M. N., 10.1112/blms/18.2.173, Bull. London Math. Soc. 10 (1986), 173–180. (1986) Zbl0586.34038MR0818822DOI10.1112/blms/18.2.173
- Gaines, R. E., Mawhin, J., Concidence degree and nonlinear differential equations, Lecture Notes in Math. 568 (1977), Berlin, New York, Springer–Verlag. (1977) MR0637067
- Jiao, G., Periodic solutions of th order ordinary differential equations, J. Math. Anal. Appl. 272 (2004), 691–699. (2004) MR1930716
- Kiguradze, I. T., Půža, B., 10.1016/S0362-546X(98)00342-3, Nonlinear Anal. 42 (2000), 229–242. (2000) MR1773980DOI10.1016/S0362-546X(98)00342-3
- Li, J. W., Wang, G. Q., Sharp inequalities for periodic functions, Appl. Math. E-Notes 5 (2005), 75–83. (2005) Zbl1076.26011MR2112160
- Liu, B. W., Huang, L. H., Existence of periodic solutions for nonlinear th order ordinary differential equations, Acta Math. Sinica 47 (2004), 1133–1140, in Chinese. (2004) Zbl1124.34334MR2128079
- Liu, W. B., Li, Y., The existence of periodic solutions for high order duffing equations, Acta Math. Sinica 46 (2003), 49–56, in Chinese. (2003) Zbl1036.34052MR1971712
- Liu, Y. J., Yang, P. H., Ge, W. G., 10.1016/j.na.2005.04.038, Nonlinear Anal. 63 (2005), 136–152. (2005) MR2167321DOI10.1016/j.na.2005.04.038
- Liu, Z. L., 10.1006/jmaa.1996.0423, J. Math. Anal. Appl. 204 (1996), 46–64. (1996) DOI10.1006/jmaa.1996.0423
- Lu, S., Ge, W., On the existence of periodic solutions for Lienard equation with a deviating argument, J. Math. Anal. Appl. 289 (2004), 241–243. (2004)
- Lu, S., Ge, W., 10.1016/j.jmaa.2004.09.010, J. Math. Anal. Appl. 308 (2005), 393–419. (2005) MR2150099DOI10.1016/j.jmaa.2004.09.010
- Mawhin, J., Degré topologique et solutions périodiques des systémes différentiels nonlineaires, Bull. Soc. Roy. Sci. Liége 38 (1969), 308–398. (1969) MR0594965
- Mawhin, J., –estimates and periodic solutions of some nonlinear differential equations, Boll. Unione Mat. Ital. 10 (1974), 343–354. (1974) MR0369823
- Omari, P., Villari, G., Zanolin, F., 10.1016/0022-0396(87)90151-3, J. Differential Equations 67 (1987), 278–293. (1987) MR0879698DOI10.1016/0022-0396(87)90151-3
- Pan, L. J., 10.1016/j.jmaa.2008.01.096, J. Math. Anal. Appl. 343 (2008), 904–918. (2008) Zbl1160.34065MR2417111DOI10.1016/j.jmaa.2008.01.096
- Pan, L. J., Chen, X. R., Periodic solutions for th order functional differential equations, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 109–126. (2010) Zbl1202.34121MR2656675
- Reissig, R., 10.1007/BF02417946, Ann. Mat. Pura Appl. 92 (1972), 193–198. (1972) MR0316827DOI10.1007/BF02417946
- Ren, J. L., Ge, W. G., On the existence of periodic solutions for the second order functional differential equation, Acta Math. Sinica 47 (2004), 569–578, in Chinese. (2004) MR2083276
- Srzednicki, S., 10.1006/jmaa.1995.1433, J. Math. Anal. Appl. 196 (1995), 666–675. (1995) MR1362714DOI10.1006/jmaa.1995.1433
- Wang, G. Q., 10.1016/j.jmaa.2004.05.016, J. Math. Anal. Appl. 298 (2004), 298–307. (2004) MR2086548DOI10.1016/j.jmaa.2004.05.016
- Zhang, Z. Q., Wang, Z. C., 10.1016/j.jmaa.2003.11.059, J. Math. Anal. Appl. 292 (2004), 115–134. (2004) MR2050220DOI10.1016/j.jmaa.2003.11.059
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.