Conformally geodesic mappings satisfying a certain initial condition
Archivum Mathematicum (2011)
- Volume: 047, Issue: 5, page 389-394
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topChudá, Hana, and Mikeš, Josef. "Conformally geodesic mappings satisfying a certain initial condition." Archivum Mathematicum 047.5 (2011): 389-394. <http://eudml.org/doc/247183>.
@article{Chudá2011,
abstract = {In this paper we study conformally geodesic mappings between pseudo-Riemannian manifolds $(M, g)$ and $(\bar\{M\}, \bar\{g\})$, i.e. mappings $f\colon M \rightarrow \bar\{M\}$ satisfying $f = f_1 \circ f_2 \circ f_3$, where $f_1, f_3$ are conformal mappings and $f_2$ is a geodesic mapping. Suppose that the initial condition $f^* \bar\{g\} = k g$ is satisfied at a point $x_0 \in M$ and that at this point the conformal Weyl tensor does not vanish. We prove that then $f$ is necessarily conformal.},
author = {Chudá, Hana, Mikeš, Josef},
journal = {Archivum Mathematicum},
keywords = {conformal mappings; geodesic mappings; conformally geodesic mappings; conformal mapping; geodesic mapping; conformally geodesic mapping},
language = {eng},
number = {5},
pages = {389-394},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Conformally geodesic mappings satisfying a certain initial condition},
url = {http://eudml.org/doc/247183},
volume = {047},
year = {2011},
}
TY - JOUR
AU - Chudá, Hana
AU - Mikeš, Josef
TI - Conformally geodesic mappings satisfying a certain initial condition
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 5
SP - 389
EP - 394
AB - In this paper we study conformally geodesic mappings between pseudo-Riemannian manifolds $(M, g)$ and $(\bar{M}, \bar{g})$, i.e. mappings $f\colon M \rightarrow \bar{M}$ satisfying $f = f_1 \circ f_2 \circ f_3$, where $f_1, f_3$ are conformal mappings and $f_2$ is a geodesic mapping. Suppose that the initial condition $f^* \bar{g} = k g$ is satisfied at a point $x_0 \in M$ and that at this point the conformal Weyl tensor does not vanish. We prove that then $f$ is necessarily conformal.
LA - eng
KW - conformal mappings; geodesic mappings; conformally geodesic mappings; conformal mapping; geodesic mapping; conformally geodesic mapping
UR - http://eudml.org/doc/247183
ER -
References
top- Aminova, A. V., 10.1023/A:1021041802041, J. Math. Sci. (New York) 113 (3) (2003), 367–470. (2003) Zbl1043.53054MR1965077DOI10.1023/A:1021041802041
- Chudá, H., Mikeš, J., On geodesic mappings with certain initial conditions, Acta Math. Acad. Paedagog. Nyházi. 26 (2) (2010), 337–341. (2010) Zbl1240.53029MR2754425
- Eisenhart, L. P., Non-Riemannian Geometry, Amer. Math. Soc. Colloq. Publ. 8, 1990, reprint of the 1927 original. (1990) MR1466961
- Hinterleitner, I., Special mappings of equidistant spaces, J. Appl. Math. 2 (2008), 31–36. (2008)
- Hinterleitner, I., Selected Special Vector Fields and Mappings in Riemannian Geometry, Ph.D. thesis, VUT Brno, 2009. (2009)
- Levi-Civita, T., Sulle transformationi delle equazioni dinamiche, Ann. Mat. Milano 24 Ser. 2 (1886), 255–300. (1886)
- Mikeš, J., Kiosak, V., Vanžurová, A., Geodesic mappings of manifolds with affine connection, Palacky University Press, Olomouc, 2008. (2008) Zbl1176.53004MR2488821
- Mikeš, J., Strambach, K., 10.1007/s00025-008-0296-2, Results Math. 53 (1–2) (2009), 153–172. (2009) Zbl1179.51009MR2481410DOI10.1007/s00025-008-0296-2
- Mikeš, J., Vanžurová, A., Hinterleitner, I., Geodesic mappings and some generalizations, Palacky University Press, Olomouc, 2009. (2009) Zbl1222.53002MR2682926
- Petrov, A. Z., New methods in the general theory of relativity, Nauka, Moscow, 1966. (1966) MR0207365
- Sinyukov, N. S., Geodesic mappings of Riemannian spaces, Nauka, Moscow, 1979. (1979) Zbl0637.53020MR0552022
- Thomas, T. Y., The differential invariants of generalized spaces, III, Cambridge Univ. Press, 1934. (1934) Zbl0009.08503
- Weyl, H., Zur Infinitesimalgeometrie. Einordnung der projektiven und der konformen Auffassung, Göttinger Nachrichten (1921), 99–112. (1921)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.