Conformally geodesic mappings satisfying a certain initial condition

Hana Chudá; Josef Mikeš

Archivum Mathematicum (2011)

  • Volume: 047, Issue: 5, page 389-394
  • ISSN: 0044-8753

Abstract

top
In this paper we study conformally geodesic mappings between pseudo-Riemannian manifolds ( M , g ) and ( M ¯ , g ¯ ) , i.e. mappings f : M M ¯ satisfying f = f 1 f 2 f 3 , where f 1 , f 3 are conformal mappings and f 2 is a geodesic mapping. Suppose that the initial condition f * g ¯ = k g is satisfied at a point x 0 M and that at this point the conformal Weyl tensor does not vanish. We prove that then f is necessarily conformal.

How to cite

top

Chudá, Hana, and Mikeš, Josef. "Conformally geodesic mappings satisfying a certain initial condition." Archivum Mathematicum 047.5 (2011): 389-394. <http://eudml.org/doc/247183>.

@article{Chudá2011,
abstract = {In this paper we study conformally geodesic mappings between pseudo-Riemannian manifolds $(M, g)$ and $(\bar\{M\}, \bar\{g\})$, i.e. mappings $f\colon M \rightarrow \bar\{M\}$ satisfying $f = f_1 \circ f_2 \circ f_3$, where $f_1, f_3$ are conformal mappings and $f_2$ is a geodesic mapping. Suppose that the initial condition $f^* \bar\{g\} = k g$ is satisfied at a point $x_0 \in M$ and that at this point the conformal Weyl tensor does not vanish. We prove that then $f$ is necessarily conformal.},
author = {Chudá, Hana, Mikeš, Josef},
journal = {Archivum Mathematicum},
keywords = {conformal mappings; geodesic mappings; conformally geodesic mappings; conformal mapping; geodesic mapping; conformally geodesic mapping},
language = {eng},
number = {5},
pages = {389-394},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Conformally geodesic mappings satisfying a certain initial condition},
url = {http://eudml.org/doc/247183},
volume = {047},
year = {2011},
}

TY - JOUR
AU - Chudá, Hana
AU - Mikeš, Josef
TI - Conformally geodesic mappings satisfying a certain initial condition
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 5
SP - 389
EP - 394
AB - In this paper we study conformally geodesic mappings between pseudo-Riemannian manifolds $(M, g)$ and $(\bar{M}, \bar{g})$, i.e. mappings $f\colon M \rightarrow \bar{M}$ satisfying $f = f_1 \circ f_2 \circ f_3$, where $f_1, f_3$ are conformal mappings and $f_2$ is a geodesic mapping. Suppose that the initial condition $f^* \bar{g} = k g$ is satisfied at a point $x_0 \in M$ and that at this point the conformal Weyl tensor does not vanish. We prove that then $f$ is necessarily conformal.
LA - eng
KW - conformal mappings; geodesic mappings; conformally geodesic mappings; conformal mapping; geodesic mapping; conformally geodesic mapping
UR - http://eudml.org/doc/247183
ER -

References

top
  1. Aminova, A. V., 10.1023/A:1021041802041, J. Math. Sci. (New York) 113 (3) (2003), 367–470. (2003) Zbl1043.53054MR1965077DOI10.1023/A:1021041802041
  2. Chudá, H., Mikeš, J., On geodesic mappings with certain initial conditions, Acta Math. Acad. Paedagog. Nyházi. 26 (2) (2010), 337–341. (2010) Zbl1240.53029MR2754425
  3. Eisenhart, L. P., Non-Riemannian Geometry, Amer. Math. Soc. Colloq. Publ. 8, 1990, reprint of the 1927 original. (1990) MR1466961
  4. Hinterleitner, I., Special mappings of equidistant spaces, J. Appl. Math. 2 (2008), 31–36. (2008) 
  5. Hinterleitner, I., Selected Special Vector Fields and Mappings in Riemannian Geometry, Ph.D. thesis, VUT Brno, 2009. (2009) 
  6. Levi-Civita, T., Sulle transformationi delle equazioni dinamiche, Ann. Mat. Milano 24 Ser. 2 (1886), 255–300. (1886) 
  7. Mikeš, J., Kiosak, V., Vanžurová, A., Geodesic mappings of manifolds with affine connection, Palacky University Press, Olomouc, 2008. (2008) Zbl1176.53004MR2488821
  8. Mikeš, J., Strambach, K., 10.1007/s00025-008-0296-2, Results Math. 53 (1–2) (2009), 153–172. (2009) Zbl1179.51009MR2481410DOI10.1007/s00025-008-0296-2
  9. Mikeš, J., Vanžurová, A., Hinterleitner, I., Geodesic mappings and some generalizations, Palacky University Press, Olomouc, 2009. (2009) Zbl1222.53002MR2682926
  10. Petrov, A. Z., New methods in the general theory of relativity, Nauka, Moscow, 1966. (1966) MR0207365
  11. Sinyukov, N. S., Geodesic mappings of Riemannian spaces, Nauka, Moscow, 1979. (1979) Zbl0637.53020MR0552022
  12. Thomas, T. Y., The differential invariants of generalized spaces, III, Cambridge Univ. Press, 1934. (1934) Zbl0009.08503
  13. Weyl, H., Zur Infinitesimalgeometrie. Einordnung der projektiven und der konformen Auffassung, Göttinger Nachrichten (1921), 99–112. (1921) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.