On almost pseudo-conformally symmetric Ricci-recurrent manifolds with applications to relativity

Uday Chand De; Avik De

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 4, page 1055-1072
  • ISSN: 0011-4642

Abstract

top
The object of the present paper is to study almost pseudo-conformally symmetric Ricci-recurrent manifolds. The existence of almost pseudo-conformally symmetric Ricci-recurrent manifolds has been proved by an explicit example. Some geometric properties have been studied. Among others we prove that in such a manifold the vector field ρ corresponding to the 1-form of recurrence is irrotational and the integral curves of the vector field ρ are geodesic. We also study some global properties of such a manifold. Finally, we study almost pseudo-conformally symmetric Ricci-recurrent spacetime. We obtain the Segre’ characteristic of such a spacetime.

How to cite

top

Chand De, Uday, and De, Avik. "On almost pseudo-conformally symmetric Ricci-recurrent manifolds with applications to relativity." Czechoslovak Mathematical Journal 62.4 (2012): 1055-1072. <http://eudml.org/doc/247187>.

@article{ChandDe2012,
abstract = {The object of the present paper is to study almost pseudo-conformally symmetric Ricci-recurrent manifolds. The existence of almost pseudo-conformally symmetric Ricci-recurrent manifolds has been proved by an explicit example. Some geometric properties have been studied. Among others we prove that in such a manifold the vector field $\rho $ corresponding to the 1-form of recurrence is irrotational and the integral curves of the vector field $\rho $ are geodesic. We also study some global properties of such a manifold. Finally, we study almost pseudo-conformally symmetric Ricci-recurrent spacetime. We obtain the Segre’ characteristic of such a spacetime.},
author = {Chand De, Uday, De, Avik},
journal = {Czechoslovak Mathematical Journal},
keywords = {pseudo-conformally symmetric manifold; almost pseudo-conformally symmetric manifold; Ricci-recurrent manifold; Einstein field equations; Segre' characteristic; pseudo-conformally symmetric manifold; almost pseudo-conformally symmetric manifold; Ricci-recurrent manifold; Einstein field equations; Segre characteristic},
language = {eng},
number = {4},
pages = {1055-1072},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On almost pseudo-conformally symmetric Ricci-recurrent manifolds with applications to relativity},
url = {http://eudml.org/doc/247187},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Chand De, Uday
AU - De, Avik
TI - On almost pseudo-conformally symmetric Ricci-recurrent manifolds with applications to relativity
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 1055
EP - 1072
AB - The object of the present paper is to study almost pseudo-conformally symmetric Ricci-recurrent manifolds. The existence of almost pseudo-conformally symmetric Ricci-recurrent manifolds has been proved by an explicit example. Some geometric properties have been studied. Among others we prove that in such a manifold the vector field $\rho $ corresponding to the 1-form of recurrence is irrotational and the integral curves of the vector field $\rho $ are geodesic. We also study some global properties of such a manifold. Finally, we study almost pseudo-conformally symmetric Ricci-recurrent spacetime. We obtain the Segre’ characteristic of such a spacetime.
LA - eng
KW - pseudo-conformally symmetric manifold; almost pseudo-conformally symmetric manifold; Ricci-recurrent manifold; Einstein field equations; Segre' characteristic; pseudo-conformally symmetric manifold; almost pseudo-conformally symmetric manifold; Ricci-recurrent manifold; Einstein field equations; Segre characteristic
UR - http://eudml.org/doc/247187
ER -

References

top
  1. Adati, T., Miyazawa, T., On a Riemannian space with recurrent conformal curvature, Tensor, N. S. 18 (1967), 348-354. (1967) Zbl0152.39103MR0215251
  2. Boeckx, E., Vanhecke, L., Kowalski, O., Riemannian Manifolds of Conullity Two, World Scientific Publishing Singapore (1996). (1996) Zbl0904.53006MR1462887
  3. Buchner, K., Roter, W., On conformally quasi-recurrent metrics I. Some general results and existence questions, Soochow J. Math. 19 (1993), 381-400. (1993) Zbl0804.53021MR1249054
  4. Cartan, E., Sur une classe remarquable d'espaces de Riemannian, Bull. S. M. F 54 (1926), 214-264 France. (1926) MR1504900
  5. Chaki, M. C., On pseudo symmetric manifolds, Ann. Sţiinţ. Univ. ``Al. I. Cuza'' Iaşi 33 (1987), 53-58. (1987) Zbl0634.53012MR0925690
  6. Chaki, M. C., Gupta, B., On conformally symmetric spaces, Indian J. Math. 5 (1963), 113-122. (1963) Zbl0122.39902MR0163255
  7. De, U. C., Biswas, H. A., On pseudo conformally symmetric manifolds, Bull. Calcutta Math. Soc. 85 (1993), 479-486. (1993) Zbl0821.53018MR1326445
  8. De, U. C., Gazi, A. K., On almost pseudo symmetric manifolds, Ann. Univ. Sci. Budap. 51 (2008), 53-68. (2008) Zbl1224.53056MR2567494
  9. De, U. C., Gazi, A. K., On almost pseudo conformally symmetric manifolds, Demonstr. Math. 42 (2009), 869-886. (2009) Zbl1184.53034MR2588986
  10. De, U. C., Bandyopadhyay, S., On weakly conformally symmetric spaces, Publ. Math. 57 (2000), 71-78. (2000) Zbl0958.53016MR1771672
  11. Derdzinski, A., Roter, W., 10.1016/j.geomphys.2008.03.011, J. Geom. Phys. 58 (2008), 1137-1147. (2008) Zbl1154.53049MR2451274DOI10.1016/j.geomphys.2008.03.011
  12. Derdzinski, A., Roter, W., 10.1007/s10455-009-9173-9, Ann. Global Anal. Geom. 37 (2010), 73-90. (2010) Zbl1193.53147MR2575471DOI10.1007/s10455-009-9173-9
  13. Derdzinski, A., Roter, W., Global properties of indefinite metrics with parallel Weyl tensor, Proc. Pure and Applied Differential Geometry, PADGE 2007 Shaker Aachen (2007), 63-72. (2007) Zbl1140.53034MR2497674
  14. Derdzinski, A., Roter, W., 10.2748/tmj/1199649875, Tohoku Math. J. 59 (2007), 566-602. (2007) Zbl1146.53014MR2404206DOI10.2748/tmj/1199649875
  15. Derdzinski, A., Roter, W., 10.36045/bbms/1235574196, Bull. Belg. Math. Soc. -- Simon Stevin 16 (2009), 117-128. (2009) Zbl1165.53011MR2498963DOI10.36045/bbms/1235574196
  16. Deszcz, R., On pseudosymmetric spaces, Bull. Soc. Math. Belg. Soc. Sér. A 44 (1992), 1-34. (1992) Zbl0808.53012MR1315367
  17. Eisenhart, L. P., Riemannian Geometry, Princeton University Press Princeton (1967). (1967) Zbl0174.53303MR0035081
  18. O'Neill, B., Semi-Riemannian Geometry. With Applications to Relativity, Academic Press New York-London (1983). (1983) Zbl0531.53051MR0719023
  19. Patterson, E. M., 10.1112/jlms/s1-27.3.287, J. Lond. Math. Soc. 27 (1952), 287-295. (1952) Zbl0048.15604MR0048891DOI10.1112/jlms/s1-27.3.287
  20. Petersen, P., Riemannian Geometry, Springer New York (2006). (2006) Zbl1220.53002MR2243772
  21. Petrov, A. Z., Einstein Spaces, Pergamon Press Oxford (1969). (1969) Zbl0174.28305MR0244912
  22. Prvanović, M., Some theorems on conformally quasi-recurrent manifolds, Fak. Univ. u Novom Sadu, Zb. Rad. Prir.-Mat., Ser. Mat. 19 (1989), 21-31. (1989) MR1099989
  23. Roter, W., 10.4064/cm-31-1-87-96, Colloq. Math. 31 (1974), 87-96. (1974) Zbl0292.53014MR0372768DOI10.4064/cm-31-1-87-96
  24. Roter, W., On the existence of conformally recurrent Ricci-recurrent spaces, Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 24 (1976), 973-979. (1976) MR0433341
  25. Roter, W., 10.4064/cm-15-1-121-127, Colloq. Math. 15 (1966), 121-127. (1966) Zbl0163.43403MR0211359DOI10.4064/cm-15-1-121-127
  26. Schouten, J. A., Ricci Calculus. An Introduction to Tensor Analysis and Its Geometrical Application. 2nd ed, Springer Berlin (1954). (1954) MR0066025
  27. Sen, R. N., Chaki, M. C., On curvature restrictions of a certain kind of conformally-flat Riemannian space of class one, Proc. Natl. Inst. Sci. India, Part A 33 (1967), 100-102. (1967) Zbl0163.43401MR0232308
  28. Suh, Y. J., Kwon, J.-H., Hae, Y. Y., 10.1016/j.geomphys.2005.05.005, J. Geom. Phys. 56 (2006), 875-901. (2006) MR2217494DOI10.1016/j.geomphys.2005.05.005
  29. Szabo, Z. I., 10.4310/jdg/1214437486, J. Differ. Geom. 17 (1982), 531-582. (1982) MR0683165DOI10.4310/jdg/1214437486
  30. Tamássy, L., Binh, T. Q., On weakly symmetric and weakly projectively symmetric Riemannian manifolds, Colloq. János Bolyai Math. Soc. 56 (1989), 663-670. (1989) MR1211691
  31. Walker, A. G., On Ruse's space of recurrent curvature, Proc. London Math. Soc., II. Sér. 52 (1951), 36-64. (1951) 
  32. Watanabe, Y., 10.2996/kmj/1138845694, Kōdai Math. Semin. Rep. 20 (1968), 264-271. (1968) Zbl0172.23302MR0248702DOI10.2996/kmj/1138845694
  33. Yano, K., Integral Formulas in Riemannian Geometry, Marcel Dekker New York (1970). (1970) Zbl0213.23801MR0284950

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.