Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 4, page 937-949
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDruţă-Romaniuc, Simona-Luiza. "Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles." Czechoslovak Mathematical Journal 62.4 (2012): 937-949. <http://eudml.org/doc/247207>.
@article{Druţă2012,
abstract = {We obtain the natural diagonal almost product and locally product structures on the total space of the cotangent bundle of a Riemannian manifold. Studying the compatibility and the anti-compatibility relations between the determined structures and a natural diagonal metric, we find the Riemannian almost product (locally product) and the (almost) para-Hermitian cotangent bundles of natural diagonal lift type. Finally, we prove the characterization theorem for the natural diagonal (almost) para-Kählerian structures on the total space of the cotangent bundle.},
author = {Druţă-Romaniuc, Simona-Luiza},
journal = {Czechoslovak Mathematical Journal},
keywords = {natural lift; cotangent bundle; almost product structure; para-Hermitian structure; para-Kähler structure; cotangent bundle; almost product structure; para-Hermitian structure; para-Kähler structure},
language = {eng},
number = {4},
pages = {937-949},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles},
url = {http://eudml.org/doc/247207},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Druţă-Romaniuc, Simona-Luiza
TI - Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 937
EP - 949
AB - We obtain the natural diagonal almost product and locally product structures on the total space of the cotangent bundle of a Riemannian manifold. Studying the compatibility and the anti-compatibility relations between the determined structures and a natural diagonal metric, we find the Riemannian almost product (locally product) and the (almost) para-Hermitian cotangent bundles of natural diagonal lift type. Finally, we prove the characterization theorem for the natural diagonal (almost) para-Kählerian structures on the total space of the cotangent bundle.
LA - eng
KW - natural lift; cotangent bundle; almost product structure; para-Hermitian structure; para-Kähler structure; cotangent bundle; almost product structure; para-Hermitian structure; para-Kähler structure
UR - http://eudml.org/doc/247207
ER -
References
top- Alekseevsky, D. V., Medori, C., Tomassini, A., 10.1070/RM2009v064n01ABEH004591, Russ. Math. Surv. 64 (2009), 1-43. (2009) Zbl1179.53050MR2503094DOI10.1070/RM2009v064n01ABEH004591
- Anastasiei, M., Some Riemannian almost product structures on tangent manifold. Proceedings of the 11th National Conference on Finsler, Lagrange and Hamilton Geometry (Craiova, 2000), Algebras Groups Geom. 17 (2000), 253-262. (2000) MR1814928
- Bejan, C., A classification of the almost parahermitian manifolds, Differential Geometry and Its Application Proc. Conf. Dubrovnik/Yougosl. 1988 (1989), 23-27. (1989) Zbl0683.53034MR1040052
- Bejan, C., Almost parahermitian structures on the tangent bundle of an almost para-co-Hermitian manifold, Finsler and Lagrange Spaces, Proc. 5th Natl. Semin., Braşov, 1988 Soc. Ştiinţe Math. R. S. România Bucharest (1989), 105-109. (1989)
- Bejan, C., Ornea, L., 10.1155/S0161171298000854, Int. J. Math. Math. Sci. 21 (1998), 613-618. (1998) Zbl0906.53016MR1620323DOI10.1155/S0161171298000854
- Cruceanu, V., Selected Papers, Editura PIM Iaşi (2006). (2006)
- Druţă, S. L., Cotangent bundles with general natural Kähler structures, Rev. Roum. Math. Pures Appl. 54 (2009), 13-23. (2009) Zbl1212.53041MR2503281
- Gadea, P. M., Masqué, J. M., Classification of almost para-Hermitian manifolds, Rend. Mat. Appl. 11 (1991), 377-396. (1991) MR1122346
- Farran, H. K., Zanoun, M. S., On hyperbolic Hermite manifolds, Publ. Inst. Math., Nouv. Sér. 46 (1989), 173-182. (1989) Zbl0702.53026MR1060071
- Heydari, A., Peyghan, E., A characterization of the infinitesimal conformal transformations on tangent bundles, Bull. Iran. Math. Soc. 34 (2008), 59-70. (2008) Zbl1176.53027MR2477994
- Ivanov, S., Zamkovoy, S., 10.1016/j.difgeo.2005.06.002, Differ. Geom. Appl. 23 (2005), 205-234. (2005) Zbl1115.53022MR2158044DOI10.1016/j.difgeo.2005.06.002
- Kolář, I., On cotangent bundles of some natural bundles. Geometry and physics. Proc. of the Winter School of Geometry and Physics (Zdíkov, 1993), Rend. Circ. Mat. Palermo Suppl. 37 (1994), 115-120. (1994) MR1344006
- Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer Berlin (1993). (1993) MR1202431
- Kowalski, O., Sekizawa, M., Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles---a classification, Bull. Tokyo Gakugei Univ., Sect. IV 40 (1988), 1-29. (1988) Zbl0656.53021MR0974641
- Luczyszyn, D., Olszak, Z., 10.4134/JKMS.2008.45.4.953, J. Korean Math. Soc. 45 (2008), 953-963. (2008) Zbl1154.53017MR2422720DOI10.4134/JKMS.2008.45.4.953
- Mekerov, D., 10.1007/s00022-008-2084-2, J. Geom. 89 (2008), 119-129. (2008) Zbl1166.53018MR2457026DOI10.1007/s00022-008-2084-2
- Mihai, I., Nicolau, C., Almost product structures on the tangent bundle of an almost paracontact manifold, Demonstr. Math. 15 (1982), 1045-1058. (1982) Zbl0522.53030MR0705829
- Mok, K.-P., Patterson, E. M., Wong, Y.-C., Structure of symmetric tensors of type (0,2) and tensors of type (1,1) on the tangent bundle, Trans. Am. Math. Soc. 234 (1977), 253-278. (1977) Zbl0363.53016MR0500673
- Munteanu, M.-I., CR-structures on the unit cotangent bundle and Bochner type tensor, An. Ştiinţ. Univ. Al. I. Cuza Iaşi A, Ser. Nouǎ, Mat. 44 (1998), 125-136. (1998) Zbl1011.53028MR1719809
- Naveira, A. M., A classification of Riemannian almost product manifolds, Rend. Math. Appl. VII. Ser. 3 (1983), 577-592. (1983) Zbl0538.53045MR0743400
- Oproiu, V., Papaghiuc, N., A pseudo-Riemannian structure on the cotangent bundle, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouǎ Mat. 36 (1990), 265-276. (1990) Zbl0758.53036MR1157451
- Oproiu, V., Papaghiuc, N., Mitric, G., Some classes of parahermitian structures on cotangent bundles, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouǎ Mat. 43 (1996), 7-22. (1996) Zbl0974.53504MR1679101
- Oproiu, V., Poroşniuc, D. D., A class of Kähler Einstein structures on the cotangent bundle, Publ. Math. 66 (2005), 457-478. (2005) Zbl1082.53029MR2137782
- Peyghan, E., Heydari, A., A class of locally symmetric para-Kähler Einstein structures on the cotangent bundle, Int. Math. Forum 5 (2010), 145-153. (2010) Zbl1193.53040MR2577131
- Staikova, M. T., Gribachev, K. I., Canonical connections and conformal invariants on Riemannian almost-product manifolds, Serdica 18 (1992), 150-161. (1992) MR1224633
- Yano, K., Differential Geometry on a Complex and Almost Complex Spaces, Pergamon Press Oxford-London-New York-Paris-Frankfurt (1965). (1965)
- Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker Inc. New York (1973). (1973) Zbl0262.53024MR0350650
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.