Existence of one-signed solutions of nonlinear four-point boundary value problems

Ruyun Ma; Ruipeng Chen

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 3, page 593-612
  • ISSN: 0011-4642

Abstract

top
In this paper, we are concerned with the existence of one-signed solutions of four-point boundary value problems - u ' ' + M u = r g ( t ) f ( u ) , u ( 0 ) = u ( ε ) , u ( 1 ) = u ( 1 - ε ) and u ' ' + M u = r g ( t ) f ( u ) , u ( 0 ) = u ( ε ) , u ( 1 ) = u ( 1 - ε ) , where ε ( 0 , 1 / 2 ) , M ( 0 , ) is a constant and r > 0 is a parameter, g C ( [ 0 , 1 ] , ( 0 , + ) ) , f C ( , ) with s f ( s ) > 0 for s 0 . The proof of the main results is based upon bifurcation techniques.

How to cite

top

Ma, Ruyun, and Chen, Ruipeng. "Existence of one-signed solutions of nonlinear four-point boundary value problems." Czechoslovak Mathematical Journal 62.3 (2012): 593-612. <http://eudml.org/doc/247221>.

@article{Ma2012,
abstract = {In this paper, we are concerned with the existence of one-signed solutions of four-point boundary value problems \[ -u^\{\prime \prime \}+Mu=rg(t)f(u), \quad u(0)=u(\varepsilon ),\quad u(1)=u(1-\varepsilon ) \] and \[ u^\{\prime \prime \}+Mu=rg(t)f(u), \quad u(0)=u(\varepsilon ),\quad u(1)=u(1-\varepsilon ), \] where $\varepsilon \in (0,\{1\}/\{2\})$, $M\in (0,\infty )$ is a constant and $r>0$ is a parameter, $g\in C([0,1],(0,+\infty ))$, $f\in C(\mathbb \{R\},\mathbb \{R\})$ with $sf(s)>0$ for $s\ne 0$. The proof of the main results is based upon bifurcation techniques.},
author = {Ma, Ruyun, Chen, Ruipeng},
journal = {Czechoslovak Mathematical Journal},
keywords = {four-point boundary value problem; one-signed solution; bifurcation method; four-point boundary value problem; one-signed solution; positive solution; negative solution; bifurcation method},
language = {eng},
number = {3},
pages = {593-612},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of one-signed solutions of nonlinear four-point boundary value problems},
url = {http://eudml.org/doc/247221},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Ma, Ruyun
AU - Chen, Ruipeng
TI - Existence of one-signed solutions of nonlinear four-point boundary value problems
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 593
EP - 612
AB - In this paper, we are concerned with the existence of one-signed solutions of four-point boundary value problems \[ -u^{\prime \prime }+Mu=rg(t)f(u), \quad u(0)=u(\varepsilon ),\quad u(1)=u(1-\varepsilon ) \] and \[ u^{\prime \prime }+Mu=rg(t)f(u), \quad u(0)=u(\varepsilon ),\quad u(1)=u(1-\varepsilon ), \] where $\varepsilon \in (0,{1}/{2})$, $M\in (0,\infty )$ is a constant and $r>0$ is a parameter, $g\in C([0,1],(0,+\infty ))$, $f\in C(\mathbb {R},\mathbb {R})$ with $sf(s)>0$ for $s\ne 0$. The proof of the main results is based upon bifurcation techniques.
LA - eng
KW - four-point boundary value problem; one-signed solution; bifurcation method; four-point boundary value problem; one-signed solution; positive solution; negative solution; bifurcation method
UR - http://eudml.org/doc/247221
ER -

References

top
  1. Chu, J., Sun, Y., Chen, H., 10.1016/j.jmaa.2007.04.070, J. Math. Anal. Appl. 337 (2008), 1267-1272 2386375. (2008) Zbl1142.34315MR2386375DOI10.1016/j.jmaa.2007.04.070
  2. Deimling, K., Nonlinear Functional Analysis, Springer, Berlin (1985) 0787404. Zbl0559.47040MR0787404
  3. Jiang, D., Liu, H., Existence of positive solutions to second order Neumann boundary value problems, J. Math. Res. Expo. 20 (2000), 360-364. (2000) Zbl0963.34019MR1787796
  4. Li, X., Jiang, D., Optimal existence theory for single and multiple positive solutions to second order Neumann boundary value problems, Indian J. Pure Appl. Math. 35 (2004), 573-586. (2004) Zbl1070.34038MR2071406
  5. Li, Z., Positive solutions of singular second-order Neumann boundary value problem, Ann. Differ. Equations 21 (2005), 321-326. (2005) Zbl1090.34524MR2175705
  6. Ma, R., Thompson, B., 10.1016/j.na.2004.07.030, Nonlinear Anal., Theory Methods Appl. 59 (2004), 707-718. (2004) Zbl1059.34013MR2096325DOI10.1016/j.na.2004.07.030
  7. Miciano, A. R., Shivaji, R., 10.1006/jmaa.1993.1294, J. Math. Anal. Appl. 178 (1993), 102-115. (1993) Zbl0783.34016MR1231730DOI10.1006/jmaa.1993.1294
  8. Rabinowitz, P. H., 10.1016/0022-1236(71)90030-9, J. Funct. Anal. 7 (1971), 487-513. (1971) Zbl0212.16504MR0301587DOI10.1016/0022-1236(71)90030-9
  9. Rachůnková, I., Staněk, S., Tvrdý, M., Solvability of Nonlinear Singular Problems for Ordinary Differential Equations, Hindawi Publishing Corporation, New York (2008). (2008) MR2572243
  10. Sun, J., Li, W., 10.1016/S0096-3003(02)00535-0, Appl. Math. Comput. 146 (2003), 187-194. (2003) Zbl1041.34013MR2007778DOI10.1016/S0096-3003(02)00535-0
  11. Sun, J., Li, W., Cheng, S., 10.1016/j.aml.2004.07.012, Appl. Math. Lett. 17 (2004), 1079-1084. (2004) Zbl1061.34014MR2087758DOI10.1016/j.aml.2004.07.012
  12. Sun, Y., Cho, Y. J., O'Regan, D., 10.1016/j.amc.2008.11.025, Appl. Math. Comput. 210 (2009), 80-86 2504122. (2009) MR2504122DOI10.1016/j.amc.2008.11.025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.