Existence of one-signed solutions of nonlinear four-point boundary value problems
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 3, page 593-612
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMa, Ruyun, and Chen, Ruipeng. "Existence of one-signed solutions of nonlinear four-point boundary value problems." Czechoslovak Mathematical Journal 62.3 (2012): 593-612. <http://eudml.org/doc/247221>.
@article{Ma2012,
abstract = {In this paper, we are concerned with the existence of one-signed solutions of four-point boundary value problems \[ -u^\{\prime \prime \}+Mu=rg(t)f(u), \quad u(0)=u(\varepsilon ),\quad u(1)=u(1-\varepsilon ) \]
and \[ u^\{\prime \prime \}+Mu=rg(t)f(u), \quad u(0)=u(\varepsilon ),\quad u(1)=u(1-\varepsilon ), \]
where $\varepsilon \in (0,\{1\}/\{2\})$, $M\in (0,\infty )$ is a constant and $r>0$ is a parameter, $g\in C([0,1],(0,+\infty ))$, $f\in C(\mathbb \{R\},\mathbb \{R\})$ with $sf(s)>0$ for $s\ne 0$. The proof of the main results is based upon bifurcation techniques.},
author = {Ma, Ruyun, Chen, Ruipeng},
journal = {Czechoslovak Mathematical Journal},
keywords = {four-point boundary value problem; one-signed solution; bifurcation method; four-point boundary value problem; one-signed solution; positive solution; negative solution; bifurcation method},
language = {eng},
number = {3},
pages = {593-612},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of one-signed solutions of nonlinear four-point boundary value problems},
url = {http://eudml.org/doc/247221},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Ma, Ruyun
AU - Chen, Ruipeng
TI - Existence of one-signed solutions of nonlinear four-point boundary value problems
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 593
EP - 612
AB - In this paper, we are concerned with the existence of one-signed solutions of four-point boundary value problems \[ -u^{\prime \prime }+Mu=rg(t)f(u), \quad u(0)=u(\varepsilon ),\quad u(1)=u(1-\varepsilon ) \]
and \[ u^{\prime \prime }+Mu=rg(t)f(u), \quad u(0)=u(\varepsilon ),\quad u(1)=u(1-\varepsilon ), \]
where $\varepsilon \in (0,{1}/{2})$, $M\in (0,\infty )$ is a constant and $r>0$ is a parameter, $g\in C([0,1],(0,+\infty ))$, $f\in C(\mathbb {R},\mathbb {R})$ with $sf(s)>0$ for $s\ne 0$. The proof of the main results is based upon bifurcation techniques.
LA - eng
KW - four-point boundary value problem; one-signed solution; bifurcation method; four-point boundary value problem; one-signed solution; positive solution; negative solution; bifurcation method
UR - http://eudml.org/doc/247221
ER -
References
top- Chu, J., Sun, Y., Chen, H., 10.1016/j.jmaa.2007.04.070, J. Math. Anal. Appl. 337 (2008), 1267-1272 2386375. (2008) Zbl1142.34315MR2386375DOI10.1016/j.jmaa.2007.04.070
- Deimling, K., Nonlinear Functional Analysis, Springer, Berlin (1985) 0787404. Zbl0559.47040MR0787404
- Jiang, D., Liu, H., Existence of positive solutions to second order Neumann boundary value problems, J. Math. Res. Expo. 20 (2000), 360-364. (2000) Zbl0963.34019MR1787796
- Li, X., Jiang, D., Optimal existence theory for single and multiple positive solutions to second order Neumann boundary value problems, Indian J. Pure Appl. Math. 35 (2004), 573-586. (2004) Zbl1070.34038MR2071406
- Li, Z., Positive solutions of singular second-order Neumann boundary value problem, Ann. Differ. Equations 21 (2005), 321-326. (2005) Zbl1090.34524MR2175705
- Ma, R., Thompson, B., 10.1016/j.na.2004.07.030, Nonlinear Anal., Theory Methods Appl. 59 (2004), 707-718. (2004) Zbl1059.34013MR2096325DOI10.1016/j.na.2004.07.030
- Miciano, A. R., Shivaji, R., 10.1006/jmaa.1993.1294, J. Math. Anal. Appl. 178 (1993), 102-115. (1993) Zbl0783.34016MR1231730DOI10.1006/jmaa.1993.1294
- Rabinowitz, P. H., 10.1016/0022-1236(71)90030-9, J. Funct. Anal. 7 (1971), 487-513. (1971) Zbl0212.16504MR0301587DOI10.1016/0022-1236(71)90030-9
- Rachůnková, I., Staněk, S., Tvrdý, M., Solvability of Nonlinear Singular Problems for Ordinary Differential Equations, Hindawi Publishing Corporation, New York (2008). (2008) MR2572243
- Sun, J., Li, W., 10.1016/S0096-3003(02)00535-0, Appl. Math. Comput. 146 (2003), 187-194. (2003) Zbl1041.34013MR2007778DOI10.1016/S0096-3003(02)00535-0
- Sun, J., Li, W., Cheng, S., 10.1016/j.aml.2004.07.012, Appl. Math. Lett. 17 (2004), 1079-1084. (2004) Zbl1061.34014MR2087758DOI10.1016/j.aml.2004.07.012
- Sun, Y., Cho, Y. J., O'Regan, D., 10.1016/j.amc.2008.11.025, Appl. Math. Comput. 210 (2009), 80-86 2504122. (2009) MR2504122DOI10.1016/j.amc.2008.11.025
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.