Study of a viscoelastic frictional contact problem with adhesion
Commentationes Mathematicae Universitatis Carolinae (2011)
- Volume: 52, Issue: 2, page 257-272
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topTouzaline, Arezki. "Study of a viscoelastic frictional contact problem with adhesion." Commentationes Mathematicae Universitatis Carolinae 52.2 (2011): 257-272. <http://eudml.org/doc/247225>.
@article{Touzaline2011,
abstract = {We consider a quasistatic frictional contact problem between a viscoelastic body with long memory and a deformable foundation. The contact is modelled with normal compliance in such a way that the penetration is limited and restricted to unilateral constraint. The adhesion between contact surfaces is taken into account and the evolution of the bonding field is described by a first order differential equation. We derive a variational formulation and prove the existence and uniqueness result of the weak solution under a certain condition on the coefficient of friction. The proof is based on time-dependent variational inequalities, differential equations and Banach fixed point theorem.},
author = {Touzaline, Arezki},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {viscoelastic; normal compliance; adhesion; frictional; variational inequality; weak solution; viscoelasticity; normal compliance; adhesion; friction; variational inequality; weak solution},
language = {eng},
number = {2},
pages = {257-272},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Study of a viscoelastic frictional contact problem with adhesion},
url = {http://eudml.org/doc/247225},
volume = {52},
year = {2011},
}
TY - JOUR
AU - Touzaline, Arezki
TI - Study of a viscoelastic frictional contact problem with adhesion
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 2
SP - 257
EP - 272
AB - We consider a quasistatic frictional contact problem between a viscoelastic body with long memory and a deformable foundation. The contact is modelled with normal compliance in such a way that the penetration is limited and restricted to unilateral constraint. The adhesion between contact surfaces is taken into account and the evolution of the bonding field is described by a first order differential equation. We derive a variational formulation and prove the existence and uniqueness result of the weak solution under a certain condition on the coefficient of friction. The proof is based on time-dependent variational inequalities, differential equations and Banach fixed point theorem.
LA - eng
KW - viscoelastic; normal compliance; adhesion; frictional; variational inequality; weak solution; viscoelasticity; normal compliance; adhesion; friction; variational inequality; weak solution
UR - http://eudml.org/doc/247225
ER -
References
top- Andersson L.-E., 10.1007/s002450010009, Appl. Math. Optim. 42 (2000), 169–202. MR1784173DOI10.1007/s002450010009
- Bonetti E., Bonfanti G., Rossi R., 10.1002/mma.957, Math. Methods Appl. Sci. 31 (2008), 1029–1064. Zbl1145.35301MR2419088DOI10.1002/mma.957
- Bonetti E., Bonfanti G., Rossi R., 10.1512/iumj.2007.56.3079, Indiana Univ. Math. J. 56 (2007), 2787-2820. Zbl1145.35027MR2375702DOI10.1512/iumj.2007.56.3079
- Bonetti E., Bonfanti G., Rossi R., 10.1088/0951-7715/22/11/007, Nonlinearity 22 (2009), 2697–2731. Zbl1185.35122MR2550692DOI10.1088/0951-7715/22/11/007
- Bonetti E., Bonfanti G., Rossi R., Long-time behaviour of a thermomechanical model for adhesive contact, (preprint arXiv:0909.2493), Discrete Contin. Dyn. Syst. Ser. S, in print (2010). MR2746376
- Cangémi L., Frottement et adhérence: modèle, traitement numérique application à l'interface fibre/matrice, Ph.D. Thesis, Univ. Méditerranée, Aix Marseille I, 1997.
- Chau O., Fernandez J.R., Shillor M., Sofonea M., 10.1016/S0377-0427(03)00547-8, J. Comput. Appl. Math. 159 (2003), 431–465. Zbl1075.74061MR2005970DOI10.1016/S0377-0427(03)00547-8
- Chau O., Shillor M., Sofonea M., 10.1007/s00033-003-1089-9, J. Appl. Math. Phys. 55 (2004), 32–47. Zbl1064.74132MR2033859DOI10.1007/s00033-003-1089-9
- Cocou M., Rocca R., 10.1051/m2an:2000112, Math. Model. Num. Anal. 34 (2000), 981–1001. MR1837764DOI10.1051/m2an:2000112
- Cocou M., Schryve M., Raous M., 10.1007/s00033-009-0027-x, Z. Angew. Math. Phys. 61 (2010), 721–743. MR2673333DOI10.1007/s00033-009-0027-x
- Duvaut G., Lions J.-L., Les inéquations en mécanique et en physique, Dunod, Paris, 1972. Zbl0298.73001MR0464857
- Eck C., Jarušek J., Krbec M., Unilateral Contact Problems. Variational Methods and Existence Theorems, Pure Appl. Math., 270, Chapman & Hall / CRC, Boca Raton, 2005. MR2128865
- Fernandez J.R., Shillor M., Sofonea M., 10.1016/S0895-7177(03)90043-4, Math. Comput. Modelling 37 (2003), 1317–1333. MR1996040DOI10.1016/S0895-7177(03)90043-4
- Frémond M., Adhérence des solides, J. Méc. Théor. Appl. 6 (1987), 383–407.
- Frémond M., Equilibre des structures qui adhèrent à leur support, C.R. Acad. Sci. Paris Sér. II 295 (1982), 913–916. MR0695554
- Frémond M., Non-smooth Thermomechanics, Springer, Berlin, 2002. MR1885252
- Hild P., 10.1016/j.crma.2003.10.010, C.R. Math. Acad. Sci. Paris 337 (2003), 685–688. Zbl1035.35090MR2030112DOI10.1016/j.crma.2003.10.010
- Jarušek J., Sofonea M., 10.1002/zamm.200710360, Z. Angew. Math. Mech. 88 (2008), 3–22. MR2376989DOI10.1002/zamm.200710360
- Jarušek J., Sofonea M., On the solvability of dynamic elastic-visco-plastic contact problems with adhesion, Ann. Acad. Rom. Sci. Ser. Math. Appl. 1 (2009), 191–214. MR2665220
- Kočvara M., Mielke A., Roubíček T., 10.1177/1081286505046482, Math. Mech. Solids 11 (2006), 423–447. MR2245202DOI10.1177/1081286505046482
- Nassar S.A., Andrews T., Kruk S., Shillor M., 10.1016/j.mcm.2004.07.018, Math. Comput. Modelling 42 (2005), 553–572. Zbl1121.74428MR2173474DOI10.1016/j.mcm.2004.07.018
- Point N., 10.1002/mma.1670100403, Math. Methods Appl. Sci. 10 (1988), 367–381. Zbl0656.73052MR0958479DOI10.1002/mma.1670100403
- Raous M., Cangémi L., Cocu M., 10.1016/S0045-7825(98)00389-2, Comput. Methods Appl. Mech. Engrg. 177 (1999), 383–399. MR1710458DOI10.1016/S0045-7825(98)00389-2
- Rocca R., Analyse et numérique de problèmes quasi-statiques de contact avec frottement local de Coulomb en élasticité, Thesis, Univ. Aix. Marseille 1, 2005.
- Rojek J., Telega J.J., Contact problems with friction, adhesion and wear in orthopeadic biomechanics I: General developements, J. Theor. Appl. Mech. 39 (2001), 655–677.
- Rossi R., Roubíček T., Thermodynamics and analysis of rate-independent adhesive contact at small strains, preprint arXiv:1004.3764 (2010). MR2793554
- Roubíček T., L. Scardia L., C. Zanini C., 10.1007/s00161-009-0106-4, Cont. Mech. Thermodynam. 21 (2009), 223–235. MR2529453DOI10.1007/s00161-009-0106-4
- Shillor M., Sofonea M., Telega J.J., 10.1007/b99799, Lecture Notes in Physics, 655, Springer, Berlin, 2004. DOI10.1007/b99799
- Sofonea M., Han H., Shillor M., Analysis and Approximations of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics, 276, Chapman & Hall / CRC Press, Boca Raton, Florida, 2006. MR2183435
- Sofonea M., Hoarau-Mantel T.V., Elastic frictionless contact problems with adhesion, Adv. Math. Sci. Appl. 15 (2005), 49–68. Zbl1085.74036MR2148278
- Sofonea M., Matei A., Variational inequalities with applications, Advances in Mathematics and Mechanics, 18, Springer, New York, 2009. Zbl1195.49002MR2488869
- Touzaline A., Frictionless contact problem with adhesion for nonlinear elastic materials, Electron. J. Differential Equations 2007, no. 174, 13 pp. Zbl1133.35051MR2366067
- Touzaline A., 10.4064/ap98-1-2, Ann. Pol. Math. 98 (2010), no. 1, 23–38. MR2607484DOI10.4064/ap98-1-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.