Maximal free sequences in a Boolean algebra
Commentationes Mathematicae Universitatis Carolinae (2011)
- Volume: 52, Issue: 4, page 593-610
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMonk, J. D.. "Maximal free sequences in a Boolean algebra." Commentationes Mathematicae Universitatis Carolinae 52.4 (2011): 593-610. <http://eudml.org/doc/247226>.
@article{Monk2011,
abstract = {We study free sequences and related notions on Boolean algebras. A free sequence on a BA $A$ is a sequence $\langle a_\xi :\xi < \alpha \rangle $ of elements of $A$, with $\alpha $ an ordinal, such that for all $F,G\in [\alpha ]^\{<\omega \}$ with $F<G$ we have $\prod _\{\xi \in F\}a_\xi \cdot \prod _\{\xi \in G\}-a_\xi \ne 0$. A free sequence of length $\alpha $ exists iff the Stone space $\operatorname\{Ult\}(A)$ has a free sequence of length $\alpha $ in the topological sense. A free sequence is maximal iff it cannot be extended at the end to a longer free sequence. The main notions studied here are the spectrum function \[ \{\mathfrak \{f\}\}\_\{\operatorname\{sp\}\}(A)=\lbrace |\alpha |:A\hbox\{ has an infinite maximal free sequence of length \}\alpha \rbrace \]
and the associated min-max function \[ \{\mathfrak \{f\}\}(A)=\min (\{\mathfrak \{f\}\}\_\{\operatorname\{sp\}\}(A)). \]
Among the results are: for infinite cardinals $\kappa \le \lambda $ there is a BA $A$ such that $\{\mathfrak \{f\}\}_\{\operatorname\{sp\}\}(A)$ is the collection of all cardinals $\mu $ with $\kappa \le \mu \le \lambda $; maximal free sequences in $A$ give rise to towers in homomorphic images of $A$; a characterization of $\{\mathfrak \{f\}\}_\{\operatorname\{sp\}\}(A)$ for $A$ a weak product of free BAs; $\{\mathfrak \{p\}\}(A), \pi \chi _\{\inf \}(A)\le \{\mathfrak \{f\}\}(A)$ for $A$ atomless; a characterization of infinite BAs whose Stone spaces have an infinite maximal free sequence; a generalization of free sequences to free chains over any linearly ordered set, and the relationship of this generalization to the supremum of lengths of homomorphic images.},
author = {Monk, J. D.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {free sequences; cardinal functions; Boolean algebras; Boolean algebra; cardinal function; free sequence},
language = {eng},
number = {4},
pages = {593-610},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Maximal free sequences in a Boolean algebra},
url = {http://eudml.org/doc/247226},
volume = {52},
year = {2011},
}
TY - JOUR
AU - Monk, J. D.
TI - Maximal free sequences in a Boolean algebra
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 4
SP - 593
EP - 610
AB - We study free sequences and related notions on Boolean algebras. A free sequence on a BA $A$ is a sequence $\langle a_\xi :\xi < \alpha \rangle $ of elements of $A$, with $\alpha $ an ordinal, such that for all $F,G\in [\alpha ]^{<\omega }$ with $F<G$ we have $\prod _{\xi \in F}a_\xi \cdot \prod _{\xi \in G}-a_\xi \ne 0$. A free sequence of length $\alpha $ exists iff the Stone space $\operatorname{Ult}(A)$ has a free sequence of length $\alpha $ in the topological sense. A free sequence is maximal iff it cannot be extended at the end to a longer free sequence. The main notions studied here are the spectrum function \[ {\mathfrak {f}}_{\operatorname{sp}}(A)=\lbrace |\alpha |:A\hbox{ has an infinite maximal free sequence of length }\alpha \rbrace \]
and the associated min-max function \[ {\mathfrak {f}}(A)=\min ({\mathfrak {f}}_{\operatorname{sp}}(A)). \]
Among the results are: for infinite cardinals $\kappa \le \lambda $ there is a BA $A$ such that ${\mathfrak {f}}_{\operatorname{sp}}(A)$ is the collection of all cardinals $\mu $ with $\kappa \le \mu \le \lambda $; maximal free sequences in $A$ give rise to towers in homomorphic images of $A$; a characterization of ${\mathfrak {f}}_{\operatorname{sp}}(A)$ for $A$ a weak product of free BAs; ${\mathfrak {p}}(A), \pi \chi _{\inf }(A)\le {\mathfrak {f}}(A)$ for $A$ atomless; a characterization of infinite BAs whose Stone spaces have an infinite maximal free sequence; a generalization of free sequences to free chains over any linearly ordered set, and the relationship of this generalization to the supremum of lengths of homomorphic images.
LA - eng
KW - free sequences; cardinal functions; Boolean algebras; Boolean algebra; cardinal function; free sequence
UR - http://eudml.org/doc/247226
ER -
References
top- Balcar B., Simon P. [91], 10.1016/0166-8641(91)90105-U, Topology Appl. 41 (1991), 133–145. (1991) MR1129703DOI10.1016/0166-8641(91)90105-U
- Balcar B., Simon P. [92], 10.1016/0012-365X(92)90654-X, Discrete Math. 108 (1992), 5–12. (1992) MR1189823DOI10.1016/0012-365X(92)90654-X
- Blass A. [10], Combinatorial cardinal characteristics of the continuum, Handbook of Set Theory (Foreman, Kanamori, eds), vol. 1, pp. 395–490. MR2768685
- Dow A., Steprāns J., Watson S. [96], 10.1112/blms/28.6.591, Bull. London Math. Soc. 28 6 (1996), 591–599. (1996) MR1405489DOI10.1112/blms/28.6.591
- Hausdorff F. [1908], 10.1007/BF01451165, Math. Ann. 65 (1908), 435–482. (1908) MR1511478DOI10.1007/BF01451165
- Koppelberg S. [89], The General Theory of Boolean Algebras, Handbook on Boolean algebras, vol. 1, North-Holland, Amsterdam, 1989, xix+312 pp. MR0991609
- Kunen K. [80], Set Theory, North Holland, Amsterdam-New York, 1980, xvi+313 pp. MR0597342
- McKenzie R., Monk J.D. [04], 10.2178/jsl/1096901761, J. Symbolic Logic 69 (2004), 3 674–682. (2004) MR2078916DOI10.2178/jsl/1096901761
- Monk J.D. [96], Cardinal Invariants on Boolean Algebras, Birkhäuser, Basel, 1996, 298 pp. MR1393943
- Monk J.D. [96b], 10.1002/malq.19960420142, Math. Logic Quart. 42 (1996), 4 537–550. (1996) MR1417845DOI10.1002/malq.19960420142
- Monk J.D. [01], Continuum cardinals generalized to Boolean algebras, J. Symbolic Logic 66 4 (2001), 1928–1958. (2001) MR1877033
- Monk J.D. [02], 10.1007/s00012-002-8201-4, Algebra Universalis 47 (2002), 4 495–500. (2002) MR1923081DOI10.1007/s00012-002-8201-4
- Monk J.D. [08], 10.2178/jsl/1208358753, J. Symbolic Logic 73 1 (2008), 261–275. (2008) MR2387943DOI10.2178/jsl/1208358753
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.