Sigma order continuity and best approximation in -spaces
Shelby J. Kilmer; Wojciech M. Kozƚowski; Grzegorz Lewicki
Commentationes Mathematicae Universitatis Carolinae (1991)
- Volume: 32, Issue: 2, page 241-250
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKilmer, Shelby J., Kozƚowski, Wojciech M., and Lewicki, Grzegorz. "Sigma order continuity and best approximation in $L_\varrho $-spaces." Commentationes Mathematicae Universitatis Carolinae 32.2 (1991): 241-250. <http://eudml.org/doc/247255>.
@article{Kilmer1991,
abstract = {In this paper we give a characterization of $\sigma $-order continuity of modular function spaces $L_\varrho $ in terms of the existence of best approximants by elements of order closed sublattices of $L_\varrho \,$. We consider separately the case of Musielak–Orlicz spaces generated by non-$\sigma $-finite measures. Such spaces are not modular function spaces and the proofs require somewhat different methods.},
author = {Kilmer, Shelby J., Kozƚowski, Wojciech M., Lewicki, Grzegorz},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {best approximation; lattices; modular function spaces; $L_\varrho $-spaces; Orlicz spaces; -order continuity; modular function space; closed sublattices; Musielak-Orlicz spaces},
language = {eng},
number = {2},
pages = {241-250},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Sigma order continuity and best approximation in $L_\varrho $-spaces},
url = {http://eudml.org/doc/247255},
volume = {32},
year = {1991},
}
TY - JOUR
AU - Kilmer, Shelby J.
AU - Kozƚowski, Wojciech M.
AU - Lewicki, Grzegorz
TI - Sigma order continuity and best approximation in $L_\varrho $-spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 2
SP - 241
EP - 250
AB - In this paper we give a characterization of $\sigma $-order continuity of modular function spaces $L_\varrho $ in terms of the existence of best approximants by elements of order closed sublattices of $L_\varrho \,$. We consider separately the case of Musielak–Orlicz spaces generated by non-$\sigma $-finite measures. Such spaces are not modular function spaces and the proofs require somewhat different methods.
LA - eng
KW - best approximation; lattices; modular function spaces; $L_\varrho $-spaces; Orlicz spaces; -order continuity; modular function space; closed sublattices; Musielak-Orlicz spaces
UR - http://eudml.org/doc/247255
ER -
References
top- Ando T., Amemiya I., Almost everywhere convergence of prediction sequences in , Z. Wahrscheinlichkeitstheorie verw. Gebiete 4 (1965), 113-120. (1965) MR0189077
- Birnbaum Z., Orlicz W., Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math. 3 (1931), 1-67. (1931) Zbl0003.25202
- Kilmer S., Kozlowski W.M., Lewicki G., Best approximants in modular function spaces, Journ. Approx. Th. 63 (1990), 338-367. (1990) Zbl0718.41049MR1081035
- Kozlowski W.M., Modular Function Spaces, Series of Monographs and Textbooks in Pure and Applied Mathematics, 122, Dekker, New York, Basel, 1988. Zbl0718.41049MR1474499
- Kozlowski W.M., Notes on modular function spaces I, Comment. Math. 28 (1988), 87-100. (1988) Zbl0747.46023MR0988963
- Kozlowski W.M., Notes on modular function spaces II, Comment. Math. 28 (1988), 101-116. (1988) Zbl0747.46022MR1474499
- Krasnosel'skii M.A., Rutickii Y.B., Convex functions and Orlicz spaces, Noordhoff, Groningen, 1961. MR0126722
- Landers D., Rogge L., Best approximants in -spaces, Z. Wahrscheinlichkeitstheorie verw. Gebiete 51 (1980), 215-237. (1980) MR0566317
- Lindenstrauss J., Tzafriri J., Classical Banach Spaces II: Function Spaces, Springer-Verlag, Berlin, Heidelberg, New York, 1979. Zbl0403.46022MR0540367
- Luxemburg W., Zaanen A., Notes on Banach function spaces I-XIII, Proc. Royal Acad. Sci., Amsterdam (1963) A-66, 135-153, 239-263, 496-504, 655-681; (1964) A-64, 101-119; (1964) A-67, 360-376, 493-543. MR0173167
- Musielak J., Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983. Zbl0557.46020MR0724434
- Orlicz W., Über eine gewisse Klasse von Räumen vom Typus B, Bull. Acad. Polon. Sci. Ser A (1932), 207-220. (1932) Zbl0006.31503
- Orlicz W., Über Räumen , Bull. Acad. Polon. Sci. Ser A (1936), 93-107. (1936)
- Shintani T., Ando T., Best approximants in space, Z. Wahrscheinlichkeitstheorie verw. Gebiete 33 (1975), 33-39. (1975) Zbl0298.41016MR0380963
- Turett B., Fenchel-Orlicz spaces, Dissertationes Math. 181 (1980), 1-60. (1980) Zbl0435.46025MR0578390
- Zaanen A.C., Integration, North Holland, Amsterdam, London, 1967. Zbl0671.42001MR0222234
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.