An existence theorem for a class of nonlinear elliptic optimal control problems

Nikolaos S. Papageorgiou

Commentationes Mathematicae Universitatis Carolinae (1991)

  • Volume: 32, Issue: 2, page 273-279
  • ISSN: 0010-2628

Abstract

top
We establish the existence of an optimal ``state-control'' pair for an optimal control problem of Lagrange type, monitored by a nonlinear elliptic partial equation involving nonmonotone nonlinearities.

How to cite

top

Papageorgiou, Nikolaos S.. "An existence theorem for a class of nonlinear elliptic optimal control problems." Commentationes Mathematicae Universitatis Carolinae 32.2 (1991): 273-279. <http://eudml.org/doc/247263>.

@article{Papageorgiou1991,
abstract = {We establish the existence of an optimal ``state-control'' pair for an optimal control problem of Lagrange type, monitored by a nonlinear elliptic partial equation involving nonmonotone nonlinearities.},
author = {Papageorgiou, Nikolaos S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Sobolev embedding theorem; Novikov’s theorem; Aumann’s theorem; pseudomonotone operator; property ($M$); nonlinear elliptic equation; Novikov's theorem; Aumann's theorem; pseudomonotone operator; optimal control problems of Lagrange type; higher order nonlinear elliptic equations of divergence form; optimal ``state-control'' pairs},
language = {eng},
number = {2},
pages = {273-279},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {An existence theorem for a class of nonlinear elliptic optimal control problems},
url = {http://eudml.org/doc/247263},
volume = {32},
year = {1991},
}

TY - JOUR
AU - Papageorgiou, Nikolaos S.
TI - An existence theorem for a class of nonlinear elliptic optimal control problems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 2
SP - 273
EP - 279
AB - We establish the existence of an optimal ``state-control'' pair for an optimal control problem of Lagrange type, monitored by a nonlinear elliptic partial equation involving nonmonotone nonlinearities.
LA - eng
KW - Sobolev embedding theorem; Novikov’s theorem; Aumann’s theorem; pseudomonotone operator; property ($M$); nonlinear elliptic equation; Novikov's theorem; Aumann's theorem; pseudomonotone operator; optimal control problems of Lagrange type; higher order nonlinear elliptic equations of divergence form; optimal ``state-control'' pairs
UR - http://eudml.org/doc/247263
ER -

References

top
  1. Barbu V., Optimal Control of Variational Inequalities, Research Notes in Math., vol. 100, Pitman, Boston, 1984. Zbl0696.49021MR0742624
  2. Browder F., Pseudomonotone operators and nonlinear elliptic boundary value problems on unbounded domains, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 2659-2661. (1977) MR0445124
  3. Cesari L., Optimization-Theory and Applications, Springer-Verlag, New York, 1983. Zbl0506.49001MR0688142
  4. Delahaye J.-P., Denel J., The continuities of the point to set maps: Definitions and equivalences, Math. Programming Study 10 (1979), 8-12. (1979) 
  5. Levin V., Borel sections of many-valued maps, Siberian Math. Journal 19 (1978), 434-438. (1978) MR0501769
  6. Lions J.-L., Optimal Control of Systems Governed by Partial Differential Equations, SpringerVerlag, New York, 1971. Zbl0203.09001MR0271512
  7. Raitum U.E., On optimal control problems for linear elliptic equations, Soviet. Math. Doklady 20 (1979), 129-132. (1979) MR0520593
  8. Saint-Beuve M.-F., On the extension of von Neumann-Aumann's theorem, Journ. Funct. Analysis 17 (1974), 112-129. (1974) MR0374364
  9. Zeidler E., Nonlinear Functional Analysis and Applications II, Springer-Verlag, Berlin, 1990. 
  10. Zolezzi T., Teoremi di esistenza per problemi di controllo ottimo retti da equazioni ellitiche o paraboliche, Rend. Sem. Mat. Univ. Padova 44 (1970), 155-173. (1970) MR0308891

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.