-medial -quasigroups

Tomáš Kepka

Commentationes Mathematicae Universitatis Carolinae (1991)

  • Volume: 32, Issue: 1, page 9-14
  • ISSN: 0010-2628

Abstract

top
For , every -medial -quasigroup is medial. If , then there exist -medial -quasigroups which are not -medial.

How to cite

top

Kepka, Tomáš. "$m$-medial $n$-quasigroups." Commentationes Mathematicae Universitatis Carolinae 32.1 (1991): 9-14. <http://eudml.org/doc/247266>.

@article{Kepka1991,
abstract = {For $n\ge 4$, every $n$-medial $n$-quasigroup is medial. If $1\le m<n$, then there exist $m$-medial $n$-quasigroups which are not $(m+1)$-medial.},
author = {Kepka, Tomáš},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$n$-quasigroup; medial; medial -quasigroup; -ary quasigroup; -medial -ary quasigroups},
language = {eng},
number = {1},
pages = {9-14},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$m$-medial $n$-quasigroups},
url = {http://eudml.org/doc/247266},
volume = {32},
year = {1991},
}

TY - JOUR
AU - Kepka, Tomáš
TI - $m$-medial $n$-quasigroups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 1
SP - 9
EP - 14
AB - For $n\ge 4$, every $n$-medial $n$-quasigroup is medial. If $1\le m<n$, then there exist $m$-medial $n$-quasigroups which are not $(m+1)$-medial.
LA - eng
KW - $n$-quasigroup; medial; medial -quasigroup; -ary quasigroup; -medial -ary quasigroups
UR - http://eudml.org/doc/247266
ER -

References

top
  1. Bénéteau L., Free commutative Moufang loops and anticommutative graded rings, J. Algebra 67 (1980), 1-35. (1980) MR0595016
  2. Bénéteau L., Une classe particulière de matroïdes parfaits, Annals of Discr. Math. 8 (1980), 229-232. (1980) MR0597178
  3. Bénéteau L., Kepka t., Lacaze J., Small finite trimedial quasigroups, Commun. Algebra 14 (1986), 1067-1090. (1986) MR0837271
  4. Bol G., Gewebe und Gruppen, Math. Ann. 114 (1937), 414-431. (1937) Zbl0016.22603MR1513147
  5. Deza M., Hamada N., The geometric structure of a matroid design derived from some commutative Moufang loops and a new MDPB association scheme, Techn. report nr. 18, Statistic Research group, Hiroshima Univ., 1980. 
  6. Evans T., Abstract mean values, Duke Math. J. 30 (1963), 331-347. (1963) Zbl0118.26304MR0155781
  7. Kepka T., Structure of triabelian quasigroups, Comment. Math. Univ. Carolinae 17 (1976), 229-240. (1976) Zbl0338.20097MR0407182

NotesEmbed ?

top

You must be logged in to post comments.