m -medial n -quasigroups

Tomáš Kepka

Commentationes Mathematicae Universitatis Carolinae (1991)

  • Volume: 32, Issue: 1, page 9-14
  • ISSN: 0010-2628

Abstract

top
For n 4 , every n -medial n -quasigroup is medial. If 1 m < n , then there exist m -medial n -quasigroups which are not ( m + 1 ) -medial.

How to cite

top

Kepka, Tomáš. "$m$-medial $n$-quasigroups." Commentationes Mathematicae Universitatis Carolinae 32.1 (1991): 9-14. <http://eudml.org/doc/247266>.

@article{Kepka1991,
abstract = {For $n\ge 4$, every $n$-medial $n$-quasigroup is medial. If $1\le m<n$, then there exist $m$-medial $n$-quasigroups which are not $(m+1)$-medial.},
author = {Kepka, Tomáš},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$n$-quasigroup; medial; medial -quasigroup; -ary quasigroup; -medial -ary quasigroups},
language = {eng},
number = {1},
pages = {9-14},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$m$-medial $n$-quasigroups},
url = {http://eudml.org/doc/247266},
volume = {32},
year = {1991},
}

TY - JOUR
AU - Kepka, Tomáš
TI - $m$-medial $n$-quasigroups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 1
SP - 9
EP - 14
AB - For $n\ge 4$, every $n$-medial $n$-quasigroup is medial. If $1\le m<n$, then there exist $m$-medial $n$-quasigroups which are not $(m+1)$-medial.
LA - eng
KW - $n$-quasigroup; medial; medial -quasigroup; -ary quasigroup; -medial -ary quasigroups
UR - http://eudml.org/doc/247266
ER -

References

top
  1. Bénéteau L., Free commutative Moufang loops and anticommutative graded rings, J. Algebra 67 (1980), 1-35. (1980) MR0595016
  2. Bénéteau L., Une classe particulière de matroïdes parfaits, Annals of Discr. Math. 8 (1980), 229-232. (1980) MR0597178
  3. Bénéteau L., Kepka t., Lacaze J., Small finite trimedial quasigroups, Commun. Algebra 14 (1986), 1067-1090. (1986) MR0837271
  4. Bol G., Gewebe und Gruppen, Math. Ann. 114 (1937), 414-431. (1937) Zbl0016.22603MR1513147
  5. Deza M., Hamada N., The geometric structure of a matroid design derived from some commutative Moufang loops and a new MDPB association scheme, Techn. report nr. 18, Statistic Research group, Hiroshima Univ., 1980. 
  6. Evans T., Abstract mean values, Duke Math. J. 30 (1963), 331-347. (1963) Zbl0118.26304MR0155781
  7. Kepka T., Structure of triabelian quasigroups, Comment. Math. Univ. Carolinae 17 (1976), 229-240. (1976) Zbl0338.20097MR0407182

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.