Existence and bifurcation results for a class of nonlinear boundary value problems in
Commentationes Mathematicae Universitatis Carolinae (1991)
- Volume: 32, Issue: 2, page 297-305
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topRother, Wolfgang. "Existence and bifurcation results for a class of nonlinear boundary value problems in $(0,\infty )$." Commentationes Mathematicae Universitatis Carolinae 32.2 (1991): 297-305. <http://eudml.org/doc/247288>.
@article{Rother1991,
abstract = {We consider the nonlinear Dirichlet problem \[ -u^\{\prime \prime \} -r(x)|u|^\sigma u= \lambda u \text\{ in \} (0,\infty ), \, u(0)=0 \text\{ and \} \lim \_\{x\rightarrow \infty \} u(x)=0, \]
and develop conditions for the function $r$ such that the considered problem has a positive classical solution. Moreover, we present some results showing that $\lambda =0$ is a bifurcation point in $W^\{1,2\} (0,\infty )$ and in $L^p(0,\infty )\, (2\le p\le \infty )$.},
author = {Rother, Wolfgang},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nonlinear Dirichlet problem; classical solution; bifurcation point; ordinary differential equation; nonlinear Dirichlet problem; classical solution; bifurcation point; minimum of a functional},
language = {eng},
number = {2},
pages = {297-305},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Existence and bifurcation results for a class of nonlinear boundary value problems in $(0,\infty )$},
url = {http://eudml.org/doc/247288},
volume = {32},
year = {1991},
}
TY - JOUR
AU - Rother, Wolfgang
TI - Existence and bifurcation results for a class of nonlinear boundary value problems in $(0,\infty )$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 2
SP - 297
EP - 305
AB - We consider the nonlinear Dirichlet problem \[ -u^{\prime \prime } -r(x)|u|^\sigma u= \lambda u \text{ in } (0,\infty ), \, u(0)=0 \text{ and } \lim _{x\rightarrow \infty } u(x)=0, \]
and develop conditions for the function $r$ such that the considered problem has a positive classical solution. Moreover, we present some results showing that $\lambda =0$ is a bifurcation point in $W^{1,2} (0,\infty )$ and in $L^p(0,\infty )\, (2\le p\le \infty )$.
LA - eng
KW - nonlinear Dirichlet problem; classical solution; bifurcation point; ordinary differential equation; nonlinear Dirichlet problem; classical solution; bifurcation point; minimum of a functional
UR - http://eudml.org/doc/247288
ER -
References
top- Adams R.A., Sobolev Spaces, Academic Press, New York, 1975. Zbl1098.46001MR0450957
- Berger M.S., On the existence and structure of stationary states for a nonlinear Klein-Gordon equation, J. Funct. Analysis 9 (1972), 249-261. (1972) Zbl0224.35061MR0299966
- Brezis H., Kato T., Remarks on the Schrödinger operator with singular complex potentials, J. Math. pures et appl. 58 (1979), 137-151. (1979) Zbl0408.35025MR0539217
- Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, SpringerVerlag, Berlin, Heidelberg, New York, 1983. Zbl1042.35002MR0737190
- Hörmander L., Linear Partial Differential Operators, Springer-Verlag, Berlin, Heidelberg, New York, 1976. MR0404822
- Stuart C.A., Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc. (3) 45 (1982), 169-192. (1982) Zbl0505.35010MR0662670
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.