Fixed points of asymptotically regular mappings in spaces with uniformly normal structure
Commentationes Mathematicae Universitatis Carolinae (1991)
- Volume: 32, Issue: 4, page 639-643
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGórnicki, Jarosław. "Fixed points of asymptotically regular mappings in spaces with uniformly normal structure." Commentationes Mathematicae Universitatis Carolinae 32.4 (1991): 639-643. <http://eudml.org/doc/247296>.
@article{Górnicki1991,
abstract = {It is proved that: for every Banach space $X$ which has uniformly normal structure there exists a $k>1$ with the property: if $A$ is a nonempty bounded closed convex subset of $X$ and $T:A\rightarrow A$ is an asymptotically regular mapping such that \[ \liminf \_\{n\rightarrow \infty \} |\hspace\{-0.8pt\}|\hspace\{-0.8pt\}|T^n|\hspace\{-0.8pt\}|\hspace\{-0.8pt\}|< k, \]
where $|\hspace\{-0.8pt\}|\hspace\{-0.8pt\}|T|\hspace\{-0.8pt\}|\hspace\{-0.8pt\}|$ is the Lipschitz constant (norm) of $T$, then $T$ has a fixed point in $A$.},
author = {Górnicki, Jarosław},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {asymptotically regular mappings; uniformly normal structure; fixed points; uniformly normal structure; asymptotically regular mapping; Lipschitz constant; fixed point},
language = {eng},
number = {4},
pages = {639-643},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Fixed points of asymptotically regular mappings in spaces with uniformly normal structure},
url = {http://eudml.org/doc/247296},
volume = {32},
year = {1991},
}
TY - JOUR
AU - Górnicki, Jarosław
TI - Fixed points of asymptotically regular mappings in spaces with uniformly normal structure
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 4
SP - 639
EP - 643
AB - It is proved that: for every Banach space $X$ which has uniformly normal structure there exists a $k>1$ with the property: if $A$ is a nonempty bounded closed convex subset of $X$ and $T:A\rightarrow A$ is an asymptotically regular mapping such that \[ \liminf _{n\rightarrow \infty } |\hspace{-0.8pt}|\hspace{-0.8pt}|T^n|\hspace{-0.8pt}|\hspace{-0.8pt}|< k, \]
where $|\hspace{-0.8pt}|\hspace{-0.8pt}|T|\hspace{-0.8pt}|\hspace{-0.8pt}|$ is the Lipschitz constant (norm) of $T$, then $T$ has a fixed point in $A$.
LA - eng
KW - asymptotically regular mappings; uniformly normal structure; fixed points; uniformly normal structure; asymptotically regular mapping; Lipschitz constant; fixed point
UR - http://eudml.org/doc/247296
ER -
References
top- Browder F.E., Petryshyn V.W., The solution by iteration of nonlinear functional equations in Banach spaces, Bull. AMS 72 (1966), 571-576. (1966) Zbl0138.08202MR0190745
- Bynum W.L., Normal structure coefficients for Banach spaces, Pacific J. Math. 86 (1980), 427-436. (1980) Zbl0442.46018MR0590555
- Casini E., Maluta E., Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure, Nonlinear Anal., TMA 9 (1985), 103-108. (1985) Zbl0526.47034MR0776365
- Daneš J., On densifying and related mappings and their applications in nonlinear functional analysis, in: Theory of Nonlinear Operators (Proc. Summer School, October 1972, GDR), Akademie-Verlag, Berlin, 1974, 15-56. MR0361946
- Downing D.J., Turett B., Some properties of the characteristic convexity relating to fixed point theory, Pacific J. Math. 104 (1983), 343-350. (1983) MR0684294
- Edelstein M., O'Brien C.R., Nonexpansive mappings, asymptotic regularity and successive approximations, J. London Math. Soc. (2) 17 (1978), 547-554. (1978) Zbl0421.47031MR0500642
- Gillespie A.A., Williams B.B., Fixed point theorem for nonexpansive mappings on Banach spaces with uniformly normal structure, Appl. Anal. 9 (1979), 121-124. (1979) MR0539537
- Górnicki J., A fixed point theorem for asymptotically regular mappings, to appear. MR1201441
- Krüppel M., Ein Fixpunktsatz für asymptotisch reguläre Operatoren in gleichmäßig konvexen Banach-Räumen, Wiss. Z. Pädagog. Hochsch. ``Liselotte Herrmann'' Güstrow, Math.-naturwiss. Fak. 25 (1987), 241-246. (1987) MR0971250
- Lin P.K., A uniformly asymptotically regular mapping without fixed points, Canad. Math. Bull. 30 (1987), 481-483. (1987) Zbl0645.47050MR0919440
- Yu X.T., On uniformly normal structure, Kexue Tongbao 33 (1988), 700-702. (1988) Zbl0681.46020
- Yu X.T., A geometrically aberrant Banach space with uniformly normal structure, Bull. Austral. Math. Soc. 38 (1988), 99-103. (1988) Zbl0646.46017MR0968233
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.