A remark on Nehari-type oscillation criteria for self-adjoint linear differential equations

Ondřej Došlý; Frank Fiedler

Commentationes Mathematicae Universitatis Carolinae (1991)

  • Volume: 32, Issue: 3, page 447-462
  • ISSN: 0010-2628

Abstract

top
Oscillation criteria of Nehari-type for the equation ( - 1 ) n ( x α y ( n ) ) ( n ) + q ( x ) y = 0 , α 𝐑 , are established. These criteria impose no sign restriction on the function q ( x ) and generalize some recent results of the second author.

How to cite

top

Došlý, Ondřej, and Fiedler, Frank. "A remark on Nehari-type oscillation criteria for self-adjoint linear differential equations." Commentationes Mathematicae Universitatis Carolinae 32.3 (1991): 447-462. <http://eudml.org/doc/247324>.

@article{Došlý1991,
abstract = {Oscillation criteria of Nehari-type for the equation $(-1)^n(x^\{\alpha \}y^\{(n)\})^\{(n)\} + q(x)y = 0$, $\alpha \in \{\mathbf \{R\}\}$, are established. These criteria impose no sign restriction on the function $q(x)$ and generalize some recent results of the second author.},
author = {Došlý, Ondřej, Fiedler, Frank},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Nehari-type oscillation criteria; conjugate points; self-adjoint equation; principal solution; self-adjoint linear differential equation; oscillatory},
language = {eng},
number = {3},
pages = {447-462},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A remark on Nehari-type oscillation criteria for self-adjoint linear differential equations},
url = {http://eudml.org/doc/247324},
volume = {32},
year = {1991},
}

TY - JOUR
AU - Došlý, Ondřej
AU - Fiedler, Frank
TI - A remark on Nehari-type oscillation criteria for self-adjoint linear differential equations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 3
SP - 447
EP - 462
AB - Oscillation criteria of Nehari-type for the equation $(-1)^n(x^{\alpha }y^{(n)})^{(n)} + q(x)y = 0$, $\alpha \in {\mathbf {R}}$, are established. These criteria impose no sign restriction on the function $q(x)$ and generalize some recent results of the second author.
LA - eng
KW - Nehari-type oscillation criteria; conjugate points; self-adjoint equation; principal solution; self-adjoint linear differential equation; oscillatory
UR - http://eudml.org/doc/247324
ER -

References

top
  1. Coppel W.A., Disconjugacy, Lectures Notes in Math. No. 220, Springer Verlag, Berlin-Heidelberg, 1971. Zbl0224.34003MR0460785
  2. Došlý O., The existence of conjugate points for self-adjoint linear differential equations, Proc. Roy. Soc. Edinburgh 112A, (1989), 73-85. MR1025455
  3. Došlý O., Oscillation criteria for self-adjoint linear differential equations, submitted to Diff. Integral Equations. 
  4. Fiedler F., Hinreichende Oszillationkriterien für gewöhnliche Differentialoperatoren höher Ordnung, Math. Nachr. 96 (1980), 35-48. (1980) MR0600799
  5. Fiedler F., Oszillationkriterien vom Nehari-Typ für gewöhnliche Differentialoperatoren vierter and sechster Ordnung, Beiträge Anal. 18 (1981), 113-132. (1981) MR0650144
  6. Fiedler F., Oscillation criteria for a class of 2 n -order ordinary differential operators, J. Diff. Equations 42 (1981), 155-185. (1981) Zbl0452.34031MR0641646
  7. Fiedler F., Oscillation criteria for a special class of 2 n -order ordinary differential equations, Math. Nachr. 131 (1987), 205-218. (1987) Zbl0644.34024MR0908812
  8. Glazman I.M., Direct Methods of Qualitative Spectral Analysis of Singular Differential operators, Davey, Jerusalem, 1965. Zbl0143.36505MR0190800
  9. Lewis R.T., Oscillation and nonoscillation criteria for some self-adjoint even order linear differential operators, Pacific J. Math. 51 (1974), 221-234. (1974) Zbl0281.34027MR0350112
  10. Müller-Pfeiffer E., Oscillation criteria of Nehari-type for Schrödinger equation, Math. Nachr. 96 (1980), 185-194. (1980) MR0600809
  11. Nehari Z., Oscillation criteria for second order linear differential equations, Trans. Amer. Math. Soc. 85 (1957), 428-445. (1957) Zbl0078.07602MR0087816

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.