A Parseval equation and a generalized finite Hankel transformation
Jorge J. Betancor; Manuel T. Flores
Commentationes Mathematicae Universitatis Carolinae (1991)
- Volume: 32, Issue: 4, page 627-638
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBetancor, Jorge J., and Flores, Manuel T.. "A Parseval equation and a generalized finite Hankel transformation." Commentationes Mathematicae Universitatis Carolinae 32.4 (1991): 627-638. <http://eudml.org/doc/247325>.
@article{Betancor1991,
abstract = {In this paper, we study the finite Hankel transformation on spaces of generalized functions by developing a new procedure. We consider two Hankel type integral transformations $h_\mu $ and $h_\mu ^\{\ast \}$ connected by the Parseval equation \[ \sum \_\{n=0\}^\{\infty \}(h\_\mu f)(n)(h\_\mu ^\{\ast \} \varphi )(n)= \int \_\{0\}^\{1\}f(x)\varphi (x)\, dx. \]
A space $S_\mu $ of functions and a space $L_\mu $ of complex sequences are introduced. $h_\mu ^\{\ast \}$ is an isomorphism from $S_\mu $ onto $L_\mu $ when $\mu \ge -\frac\{1\}\{2\}$. We propose to define the generalized finite Hankel transform $h^\{\prime \}_\mu f$ of $f\in S^\{\prime \}_\mu $ by \[ \langle (h^\{\prime \}\_\mu f), ((h\_\mu ^\{\ast \} \varphi )(n))\_\{n=0\}^\{\infty \}\rangle =\langle f,\varphi \rangle , \quad \text\{for \} \varphi \in S\_\mu . \]},
author = {Betancor, Jorge J., Flores, Manuel T.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {finite Hankel transformation; distribution; Parseval equation; Bessel function of first kind; generalized finite Hankel transform},
language = {eng},
number = {4},
pages = {627-638},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A Parseval equation and a generalized finite Hankel transformation},
url = {http://eudml.org/doc/247325},
volume = {32},
year = {1991},
}
TY - JOUR
AU - Betancor, Jorge J.
AU - Flores, Manuel T.
TI - A Parseval equation and a generalized finite Hankel transformation
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 4
SP - 627
EP - 638
AB - In this paper, we study the finite Hankel transformation on spaces of generalized functions by developing a new procedure. We consider two Hankel type integral transformations $h_\mu $ and $h_\mu ^{\ast }$ connected by the Parseval equation \[ \sum _{n=0}^{\infty }(h_\mu f)(n)(h_\mu ^{\ast } \varphi )(n)= \int _{0}^{1}f(x)\varphi (x)\, dx. \]
A space $S_\mu $ of functions and a space $L_\mu $ of complex sequences are introduced. $h_\mu ^{\ast }$ is an isomorphism from $S_\mu $ onto $L_\mu $ when $\mu \ge -\frac{1}{2}$. We propose to define the generalized finite Hankel transform $h^{\prime }_\mu f$ of $f\in S^{\prime }_\mu $ by \[ \langle (h^{\prime }_\mu f), ((h_\mu ^{\ast } \varphi )(n))_{n=0}^{\infty }\rangle =\langle f,\varphi \rangle , \quad \text{for } \varphi \in S_\mu . \]
LA - eng
KW - finite Hankel transformation; distribution; Parseval equation; Bessel function of first kind; generalized finite Hankel transform
UR - http://eudml.org/doc/247325
ER -
References
top- Betancor J.J., The Hankel-Schwartz transform for functions of compact support, Rend. Mat. Appl. 7 (3-4) (1987), 399-409. (1987) MR0986009
- Betancor J.J., A mixed Parseval's equation and a generalized Hankel transformation of distributions, Can. J. Math. XLI (2) (1989), 274-284. (1989) Zbl0666.46046MR1001612
- Churchill R.V., Fourier Series and Boundary Value Problems, McGraw Hill, New York, 1963. Zbl0378.42001MR0149173
- Cinelli G., An extension of the finite Hankel transform and applications, Int. J. Engng. 3 (1965), 539-559. (1965) Zbl0151.17102MR0194853
- Dube L.S., On finite Hankel transformation of generalized functions, Pacific J. Math. 62 (1976), 365-378. (1976) Zbl0329.46044MR0410365
- Gelfand I.M., Shilov G.E., Generalized functions, Vol. III, Academic Press, New York, 1967. MR0217416
- Liu S.H., Method of generalized finite Hankel transform, Z. Angew. Math. Mech. 51 (1971), 311-313. (1971) MR0284772
- Méndez J.M., A mixed Parseval equation and the generalized Hankel transformation, Proc. Amer. Math. Soc. 102 (1988), 619-624. (1988) MR0928991
- Méndez J.M., The finite Hankel-Schwartz transform, J. Korean Math. Soc. 26 (1) (1989), 647-655. (1989) MR1005866
- Méndez J.M., Negrín J.R., Fourier Bessel series expansions of generalized functions and finite Hankel transforms of distributions, Rev. Roum. de Math. Pures et Appl. XXXIV (7) (1989), 647-655. (1989) MR1023593
- Pandey J.N., Pathak R.S., Eigenfunction expansion of generalized functions, Nagoya Math. J. 72 (1978), 1-25. (1978) Zbl0362.34018MR0514887
- Pathak R.S., Orthogonal series representations for generalized functions, J. Math. Anal. Appl. 130 (1988), 316-333. (1988) Zbl0647.46037MR0929938
- Pathak R.S., Singh O.P., Finite Hankel transforms of distributions, Pacific J. Math. 99 (1982), 439-458. (1982) Zbl0484.46039MR0658074
- Sneddon I.N., On finite Hankel transforms, Phil. Mag. (7) 17 (1946), 16-25. (1946) MR0018263
- Sneddon I.N., The Use of Integral Transforms, Tata McGraw Hill, New Delhi, 1979. Zbl0237.44001
- Titchmarsh E.C., A class of expansions in series of Bessel functions, Proc. London Math. Soc. (2) 22 (1924), xiii-xvi. (1924)
- Watson G.N., Theory of Bessel Functions, 2nd ed., Cambridge University Press, Cambridge, 1958. Zbl0849.33001
- Zemanian A.H., Orthonormal series expansions of certain distributions and distributional transform calculus, J. Math. Anal. Appl. 14 (1966), 263-275. (1966) Zbl0138.37804MR0211259
- Zemanian A.H., Generalized Integral Transformations, Interscience Publishers, New York, 1968. Zbl0643.46029MR0423007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.