A Parseval equation and a generalized finite Hankel transformation

Jorge J. Betancor; Manuel T. Flores

Commentationes Mathematicae Universitatis Carolinae (1991)

  • Volume: 32, Issue: 4, page 627-638
  • ISSN: 0010-2628

Abstract

top
In this paper, we study the finite Hankel transformation on spaces of generalized functions by developing a new procedure. We consider two Hankel type integral transformations h μ and h μ * connected by the Parseval equation n = 0 ( h μ f ) ( n ) ( h μ * ϕ ) ( n ) = 0 1 f ( x ) ϕ ( x ) d x . A space S μ of functions and a space L μ of complex sequences are introduced. h μ * is an isomorphism from S μ onto L μ when μ - 1 2 . We propose to define the generalized finite Hankel transform h μ ' f of f S μ ' by ( h μ ' f ) , ( ( h μ * ϕ ) ( n ) ) n = 0 = f , ϕ , for ϕ S μ .

How to cite

top

Betancor, Jorge J., and Flores, Manuel T.. "A Parseval equation and a generalized finite Hankel transformation." Commentationes Mathematicae Universitatis Carolinae 32.4 (1991): 627-638. <http://eudml.org/doc/247325>.

@article{Betancor1991,
abstract = {In this paper, we study the finite Hankel transformation on spaces of generalized functions by developing a new procedure. We consider two Hankel type integral transformations $h_\mu $ and $h_\mu ^\{\ast \}$ connected by the Parseval equation \[ \sum \_\{n=0\}^\{\infty \}(h\_\mu f)(n)(h\_\mu ^\{\ast \} \varphi )(n)= \int \_\{0\}^\{1\}f(x)\varphi (x)\, dx. \] A space $S_\mu $ of functions and a space $L_\mu $ of complex sequences are introduced. $h_\mu ^\{\ast \}$ is an isomorphism from $S_\mu $ onto $L_\mu $ when $\mu \ge -\frac\{1\}\{2\}$. We propose to define the generalized finite Hankel transform $h^\{\prime \}_\mu f$ of $f\in S^\{\prime \}_\mu $ by \[ \langle (h^\{\prime \}\_\mu f), ((h\_\mu ^\{\ast \} \varphi )(n))\_\{n=0\}^\{\infty \}\rangle =\langle f,\varphi \rangle , \quad \text\{for \} \varphi \in S\_\mu . \]},
author = {Betancor, Jorge J., Flores, Manuel T.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {finite Hankel transformation; distribution; Parseval equation; Bessel function of first kind; generalized finite Hankel transform},
language = {eng},
number = {4},
pages = {627-638},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A Parseval equation and a generalized finite Hankel transformation},
url = {http://eudml.org/doc/247325},
volume = {32},
year = {1991},
}

TY - JOUR
AU - Betancor, Jorge J.
AU - Flores, Manuel T.
TI - A Parseval equation and a generalized finite Hankel transformation
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 4
SP - 627
EP - 638
AB - In this paper, we study the finite Hankel transformation on spaces of generalized functions by developing a new procedure. We consider two Hankel type integral transformations $h_\mu $ and $h_\mu ^{\ast }$ connected by the Parseval equation \[ \sum _{n=0}^{\infty }(h_\mu f)(n)(h_\mu ^{\ast } \varphi )(n)= \int _{0}^{1}f(x)\varphi (x)\, dx. \] A space $S_\mu $ of functions and a space $L_\mu $ of complex sequences are introduced. $h_\mu ^{\ast }$ is an isomorphism from $S_\mu $ onto $L_\mu $ when $\mu \ge -\frac{1}{2}$. We propose to define the generalized finite Hankel transform $h^{\prime }_\mu f$ of $f\in S^{\prime }_\mu $ by \[ \langle (h^{\prime }_\mu f), ((h_\mu ^{\ast } \varphi )(n))_{n=0}^{\infty }\rangle =\langle f,\varphi \rangle , \quad \text{for } \varphi \in S_\mu . \]
LA - eng
KW - finite Hankel transformation; distribution; Parseval equation; Bessel function of first kind; generalized finite Hankel transform
UR - http://eudml.org/doc/247325
ER -

References

top
  1. Betancor J.J., The Hankel-Schwartz transform for functions of compact support, Rend. Mat. Appl. 7 (3-4) (1987), 399-409. (1987) MR0986009
  2. Betancor J.J., A mixed Parseval's equation and a generalized Hankel transformation of distributions, Can. J. Math. XLI (2) (1989), 274-284. (1989) Zbl0666.46046MR1001612
  3. Churchill R.V., Fourier Series and Boundary Value Problems, McGraw Hill, New York, 1963. Zbl0378.42001MR0149173
  4. Cinelli G., An extension of the finite Hankel transform and applications, Int. J. Engng. 3 (1965), 539-559. (1965) Zbl0151.17102MR0194853
  5. Dube L.S., On finite Hankel transformation of generalized functions, Pacific J. Math. 62 (1976), 365-378. (1976) Zbl0329.46044MR0410365
  6. Gelfand I.M., Shilov G.E., Generalized functions, Vol. III, Academic Press, New York, 1967. MR0217416
  7. Liu S.H., Method of generalized finite Hankel transform, Z. Angew. Math. Mech. 51 (1971), 311-313. (1971) MR0284772
  8. Méndez J.M., A mixed Parseval equation and the generalized Hankel transformation, Proc. Amer. Math. Soc. 102 (1988), 619-624. (1988) MR0928991
  9. Méndez J.M., The finite Hankel-Schwartz transform, J. Korean Math. Soc. 26 (1) (1989), 647-655. (1989) MR1005866
  10. Méndez J.M., Negrín J.R., Fourier Bessel series expansions of generalized functions and finite Hankel transforms of distributions, Rev. Roum. de Math. Pures et Appl. XXXIV (7) (1989), 647-655. (1989) MR1023593
  11. Pandey J.N., Pathak R.S., Eigenfunction expansion of generalized functions, Nagoya Math. J. 72 (1978), 1-25. (1978) Zbl0362.34018MR0514887
  12. Pathak R.S., Orthogonal series representations for generalized functions, J. Math. Anal. Appl. 130 (1988), 316-333. (1988) Zbl0647.46037MR0929938
  13. Pathak R.S., Singh O.P., Finite Hankel transforms of distributions, Pacific J. Math. 99 (1982), 439-458. (1982) Zbl0484.46039MR0658074
  14. Sneddon I.N., On finite Hankel transforms, Phil. Mag. (7) 17 (1946), 16-25. (1946) MR0018263
  15. Sneddon I.N., The Use of Integral Transforms, Tata McGraw Hill, New Delhi, 1979. Zbl0237.44001
  16. Titchmarsh E.C., A class of expansions in series of Bessel functions, Proc. London Math. Soc. (2) 22 (1924), xiii-xvi. (1924) 
  17. Watson G.N., Theory of Bessel Functions, 2nd ed., Cambridge University Press, Cambridge, 1958. Zbl0849.33001
  18. Zemanian A.H., Orthonormal series expansions of certain distributions and distributional transform calculus, J. Math. Anal. Appl. 14 (1966), 263-275. (1966) Zbl0138.37804MR0211259
  19. Zemanian A.H., Generalized Integral Transformations, Interscience Publishers, New York, 1968. Zbl0643.46029MR0423007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.