On generalization of injectivity

Roger Yue Chi Ming

Archivum Mathematicum (1992)

  • Volume: 028, Issue: 3-4, page 215-220
  • ISSN: 0044-8753

Abstract

top
Characterizations of quasi-continuous modules and continuous modules are given. A non-trivial generalization of injectivity (distinct from p -injectivity) is considered.

How to cite

top

Yue Chi Ming, Roger. "On generalization of injectivity." Archivum Mathematicum 028.3-4 (1992): 215-220. <http://eudml.org/doc/247334>.

@article{YueChiMing1992,
abstract = {Characterizations of quasi-continuous modules and continuous modules are given. A non-trivial generalization of injectivity (distinct from $p$-injectivity) is considered.},
author = {Yue Chi Ming, Roger},
journal = {Archivum Mathematicum},
keywords = {continuous modules; quasi-continuous modules; injective modules; quasi-Frobeniusean rings; m-injective rings; complement; direct summand; continuous modules; relative complement; homomorphism; endomorphism; quasi-Frobenius rings},
language = {eng},
number = {3-4},
pages = {215-220},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On generalization of injectivity},
url = {http://eudml.org/doc/247334},
volume = {028},
year = {1992},
}

TY - JOUR
AU - Yue Chi Ming, Roger
TI - On generalization of injectivity
JO - Archivum Mathematicum
PY - 1992
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 028
IS - 3-4
SP - 215
EP - 220
AB - Characterizations of quasi-continuous modules and continuous modules are given. A non-trivial generalization of injectivity (distinct from $p$-injectivity) is considered.
LA - eng
KW - continuous modules; quasi-continuous modules; injective modules; quasi-Frobeniusean rings; m-injective rings; complement; direct summand; continuous modules; relative complement; homomorphism; endomorphism; quasi-Frobenius rings
UR - http://eudml.org/doc/247334
ER -

References

top
  1. Continuous rings with ACC on annihilators, . 
  2. Algebra II:Ring Theory, Grundlehren 191 (1976), Springer Verlag. (1976) MR0427349
  3. Regular rings , V -rings and their generalizations, Hiroshima Math J. 9 (1979), 137-149. (1979) MR0529329
  4. Continuous rings with ACC on essential are Artinian, Proc. Amer. Math. Soc. 
  5. On rings whose simple modules are injective, J. Algebra 25 (1973), 185-201. (1973) MR0316505
  6. Continuous and discrete modules, London Math. Soc. Lecture note Series 147 (Cambridge University Press) (1990). (1990) MR1084376
  7. Chain conditions and quotient rings of pp. rings, Math. J. Okayama Univ. 30 (1988), 71-78. (1988) MR0976734
  8. A note on quasi–Frobenius rings and ring epimorphisms, Canad. Math. Bull. 12 (1969), 287-292. (1969) Zbl0182.36704MR0251075
  9. V -rings relative to hereditary torsion theories, Tsukuba J. Math. 6 (1982), 293-298. (1982) Zbl0529.16009MR0705120
  10. On continuous rings and self-injective rings, Trans. Amer. Math. Soc. 118 (1965), 158-173. (1965) Zbl0144.27301MR0174592
  11. Generalised V -rings and torsion theories, Comm. Algebra 14 (1986), 455-467. (1986) MR0823346
  12. P -injectivity of simple pretorsion modules, Glasgow Math. J. 28 (1986), 223-225. (1986) MR0848429
  13. On p.p.rings, Kobe Math. 7 (1990), 77-80. (1990) MR1077571
  14. S I -modules, Math. J. Okayama Univ. 28 (1986), 133-146. (1986) Zbl0621.16027MR0885022
  15. On V -rings and prime rings, J. Algebra 62 (1980), 13-20. (1980) Zbl0429.16018MR0561114
  16. On von Neumann regular rings, XIII. Ann. Univ. Ferrara Sez. VII, Sc. Mat. 31 (1985), 49-61. (1985) Zbl0602.16012MR0841852
  17. On injectivity and p -injectivity, J. Math. Kyoto Univ. 27 (1987), 439-452. (1987) Zbl0655.16012MR0910229
  18. On von Neumann regular rings, XV. Acta Math. Vietnamica 13 (1988), 71-79. (1988) Zbl0685.16009MR1023706
  19. A note on regular rings, Bull. Soc. Math. Belgique Ser. B 41 (1989), 129-138. (1989) Zbl0672.16011MR1044007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.