Cantor-connectedness revisited

Robert Lowen

Commentationes Mathematicae Universitatis Carolinae (1992)

  • Volume: 33, Issue: 3, page 525-532
  • ISSN: 0010-2628

Abstract

top
Following Preuss' general connectedness theory in topological categories, a connectedness concept for approach spaces is introduced, which unifies topological connectedness in the setting of topological spaces, and Cantor-connectedness in the setting of metric spaces.

How to cite

top

Lowen, Robert. "Cantor-connectedness revisited." Commentationes Mathematicae Universitatis Carolinae 33.3 (1992): 525-532. <http://eudml.org/doc/247379>.

@article{Lowen1992,
abstract = {Following Preuss' general connectedness theory in topological categories, a connectedness concept for approach spaces is introduced, which unifies topological connectedness in the setting of topological spaces, and Cantor-connectedness in the setting of metric spaces.},
author = {Lowen, Robert},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {connected; Cantor-connected; metric space; topological space; approach space; approach space; uniformly connected pseudometric space},
language = {eng},
number = {3},
pages = {525-532},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Cantor-connectedness revisited},
url = {http://eudml.org/doc/247379},
volume = {33},
year = {1992},
}

TY - JOUR
AU - Lowen, Robert
TI - Cantor-connectedness revisited
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1992
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 33
IS - 3
SP - 525
EP - 532
AB - Following Preuss' general connectedness theory in topological categories, a connectedness concept for approach spaces is introduced, which unifies topological connectedness in the setting of topological spaces, and Cantor-connectedness in the setting of metric spaces.
LA - eng
KW - connected; Cantor-connected; metric space; topological space; approach space; approach space; uniformly connected pseudometric space
UR - http://eudml.org/doc/247379
ER -

References

top
  1. Arhangel'skii A., Wiegandt R., Connectedness and disconnectedness in topology, Gen. Topology Appl. 5 (1975), 9-33. (1975) MR0367920
  2. Banas J., Goebel K., Measures of Non-Compactness in Banach Spaces, Marcel Dekker, 1980. MR0591679
  3. Cantor G., Über unendliche, lineare punktmannigfaltigkeiten, Math. Ann. 21 (1883), 545-591. (1883) MR1510215
  4. Connell E.M., Properties of fixed point spaces, Proc. Amer. Math. Soc. 10 (1959), 974-979. (1959) Zbl0163.17705MR0110093
  5. De Groot J., De Vries J., Van der Walt M., Almost fixed point theorems for the euclidean plane, Math. Centre Tracts 1 (1967). (1967) 
  6. Fort M.K., Essential and non-essential fixed points, Amer. J. Math. 72 (1950), 315-322. (1950) Zbl0036.13001MR0034573
  7. Herrlich H., Categorical topology 1971-1981, Gen. Topol. Rel. Mod. Analysis and Algebra, Proc. 5th Prague Top. Symp., pages 279-383, 1983. Zbl0502.54001MR0698425
  8. Herrlich H., Einführung in die Topologie, Heldermann Verlag, 1986. Zbl0628.54001MR0846211
  9. Isiwata T., Metrization of additive κ -metric spaces, Proc. Amer. Math. Soc. 100 (1987), 164-168. (1987) Zbl0612.54033MR0883422
  10. Klee V.L., Stability of the fixed point property, Colloq. Math. 8 (1961), 43-46. (1961) Zbl0101.15101MR0126261
  11. Kuratowski C., Sur les espaces complets, Fund. Math. 15 (1930), 301-309. (1930) 
  12. Lowen E., Lowen R., Quasitopos hulls of categories containing topological and metric objects, Cahiers Topol. Géom. Diff. 30 (1989), 213-228. (1989) Zbl0706.18002MR1029625
  13. Lowen R., Kuratowski's measure of non-compactness revisited, Quarterly J. Math. Oxford 39 (1988), 235-254. (1988) Zbl0672.54025MR0947504
  14. Lowen R., Approach spaces : a common supercategory of TOP and MET, Math. Nachr. 141 (1989), 183-226. (1989) Zbl0676.54012MR1014427
  15. Lowen R., A topological category suited for approximation theory, J. Approximation Theory 56 (1989), 108-117. (1989) Zbl0675.41046MR0977878
  16. Marny T., On epireflective subcategories of topological categories, Gen. Topol. Appl. 10 (1979), 175-181. (1979) Zbl0415.54007MR0527843
  17. Mrowka S., Pervin W.J., On uniform connectedness, Proc. Amer. Math. Soc. 15 (1964), 446-449. (1964) Zbl0126.18301MR0161307
  18. Preuss G., E-zusammenhangende Raüme, Manuscripta Math. 3 (1970), 331-342. (1970) MR0282323
  19. Preuss G., Relative connectedness and disconnectedness in topological categories, Quaest. Math. 2 (1977), 297-306. (1977) MR0500841
  20. Preuss G., Connection properties in topological categories and related topics, Lecture Notes in Mathematics 719 (1979), 293-307. (1979) Zbl0411.18002MR0544654
  21. Sčepin E.V., On κ -metrizable spaces, Math. USSR Izv. 14 (1980), 407-440. (1980) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.