Quadratic functionals with a variable singular end point
Commentationes Mathematicae Universitatis Carolinae (1992)
- Volume: 33, Issue: 3, page 411-425
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDošlá, Zuzana, and Zezza, PierLuigi. "Quadratic functionals with a variable singular end point." Commentationes Mathematicae Universitatis Carolinae 33.3 (1992): 411-425. <http://eudml.org/doc/247380>.
@article{Došlá1992,
abstract = {In this paper we introduce the definition of coupled point with respect to a (scalar) quadratic functional on a noncompact interval. In terms of coupled points we prove necessary (and sufficient) conditions for the nonnegativity of these functionals.},
author = {Došlá, Zuzana, Zezza, PierLuigi},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {quadratic functional; singular quadratic functional; Euler-Lagrange equation; conjugate point; coupled point; singularity condition; singular quadratic functional; Euler-Lagrange equation; conjugate point; coupled point; necessary and sufficient conditions},
language = {eng},
number = {3},
pages = {411-425},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Quadratic functionals with a variable singular end point},
url = {http://eudml.org/doc/247380},
volume = {33},
year = {1992},
}
TY - JOUR
AU - Došlá, Zuzana
AU - Zezza, PierLuigi
TI - Quadratic functionals with a variable singular end point
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1992
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 33
IS - 3
SP - 411
EP - 425
AB - In this paper we introduce the definition of coupled point with respect to a (scalar) quadratic functional on a noncompact interval. In terms of coupled points we prove necessary (and sufficient) conditions for the nonnegativity of these functionals.
LA - eng
KW - quadratic functional; singular quadratic functional; Euler-Lagrange equation; conjugate point; coupled point; singularity condition; singular quadratic functional; Euler-Lagrange equation; conjugate point; coupled point; necessary and sufficient conditions
UR - http://eudml.org/doc/247380
ER -
References
top- Morse M., Leighton W., Singular quadratic functionals, Trans. Amer. Math. Soc. 40 (1936), 252-286. (1936) Zbl0015.02701MR1501873
- Leighton W., Principal quadratic functionals, Trans. Amer. Math. Soc. 67 (1949), 253-274. (1949) Zbl0041.22404MR0034535
- Leighton W., Martin A.D., Quadratic functionals with a singular end point, Trans. Amer. Math. Soc. 78 (1955), 98-128. (1955) Zbl0064.35401MR0066570
- Reid W.T., Sturmian theory for ordinary differential equations, Springer-Verlag 1980. Zbl0459.34001MR0606199
- Zeidan V., Zezza P., Coupled points in the calculus of variations and applications to periodic problems, Trans. Amer. Math. Soc. 315 (1989), 323-335. (1989) Zbl0677.49020MR0961599
- Zeidan V., Zezza P., Variable end points in the calculus of variations: Coupled points, in ``Analysis and Optimization of Systems'', A. Bensoussan, J.L. Lions eds., Lectures Notes in Control and Information Sci. 111, Springer-Verlag, Heidelberg, 1988. MR0956284
- Zezza P., The Jacobi condition for elliptic forms in Hilbert spaces, JOTA 76 (1993). (1993) MR1203907
- Zezza P., Došlá Z., Coupled points in the calculus of variations and optimal control theory via the quadratic form theory, preprint.
- Coppel W.A., Disconjugacy, Lecture Notes in Math. 220, Springer-Verlag, Berlin-Heidelberg, 1971. Zbl0224.34003MR0460785
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.