Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces

Jiří Matoušek

Commentationes Mathematicae Universitatis Carolinae (1992)

  • Volume: 33, Issue: 3, page 451-463
  • ISSN: 0010-2628

Abstract

top
Let ( X , ρ ) , ( Y , σ ) be metric spaces and f : X Y an injective mapping. We put f L i p = sup { σ ( f ( x ) , f ( y ) ) / ρ ( x , y ) ; x , y X , x y } , and dist ( f ) = f L i p . f - 1 L i p (the distortion of the mapping f ). Some Ramsey-type questions for mappings of finite metric spaces with bounded distortion are studied; e.g., the following theorem is proved: Let X be a finite metric space, and let ε > 0 , K be given numbers. Then there exists a finite metric space Y , such that for every mapping f : Y Z ( Z arbitrary metric space) with dist ( f ) < K one can find a mapping g : X Y , such that both the mappings g and f | g ( X ) have distortion at most ( 1 + ε ) . If X is isometrically embeddable into a p space (for some p [ 1 , ] ), then also Y can be chosen with this property.

How to cite

top

Matoušek, Jiří. "Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces." Commentationes Mathematicae Universitatis Carolinae 33.3 (1992): 451-463. <http://eudml.org/doc/247391>.

@article{Matoušek1992,
abstract = {Let $(X,\rho )$, $(Y,\sigma )$ be metric spaces and $f:X\rightarrow Y$ an injective mapping. We put $\Vert f\Vert _\{Lip\} = \sup \lbrace \sigma (f(x),f(y))/\rho (x,y)$; $x,y\in X$, $x\ne y\rbrace $, and $\operatorname\{dist\}(f)= \Vert f\Vert _\{Lip\}.\Vert f^\{-1\}\Vert _\{Lip\}$ (the distortion of the mapping $f$). Some Ramsey-type questions for mappings of finite metric spaces with bounded distortion are studied; e.g., the following theorem is proved: Let $X$ be a finite metric space, and let $\varepsilon >0$, $K$ be given numbers. Then there exists a finite metric space $Y$, such that for every mapping $f:Y\rightarrow Z$ ($Z$ arbitrary metric space) with $\operatorname\{dist\}(f)<K$ one can find a mapping $g:X\rightarrow Y$, such that both the mappings $g$ and $f|_\{g(X)\}$ have distortion at most $(1+\varepsilon )$. If $X$ is isometrically embeddable into a $\ell _p$ space (for some $p\in [1,\infty ]$), then also $Y$ can be chosen with this property.},
author = {Matoušek, Jiří},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Ramsey theory; embedding of metric spaces; distortion; Lipschitz mapping; differentiability of Lipschitz mappings; Ramsey theory; embedding of metric spaces; Lipschitz mapping; differentiability of Lipschitz mappings; distortion; finite metric space},
language = {eng},
number = {3},
pages = {451-463},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces},
url = {http://eudml.org/doc/247391},
volume = {33},
year = {1992},
}

TY - JOUR
AU - Matoušek, Jiří
TI - Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1992
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 33
IS - 3
SP - 451
EP - 463
AB - Let $(X,\rho )$, $(Y,\sigma )$ be metric spaces and $f:X\rightarrow Y$ an injective mapping. We put $\Vert f\Vert _{Lip} = \sup \lbrace \sigma (f(x),f(y))/\rho (x,y)$; $x,y\in X$, $x\ne y\rbrace $, and $\operatorname{dist}(f)= \Vert f\Vert _{Lip}.\Vert f^{-1}\Vert _{Lip}$ (the distortion of the mapping $f$). Some Ramsey-type questions for mappings of finite metric spaces with bounded distortion are studied; e.g., the following theorem is proved: Let $X$ be a finite metric space, and let $\varepsilon >0$, $K$ be given numbers. Then there exists a finite metric space $Y$, such that for every mapping $f:Y\rightarrow Z$ ($Z$ arbitrary metric space) with $\operatorname{dist}(f)<K$ one can find a mapping $g:X\rightarrow Y$, such that both the mappings $g$ and $f|_{g(X)}$ have distortion at most $(1+\varepsilon )$. If $X$ is isometrically embeddable into a $\ell _p$ space (for some $p\in [1,\infty ]$), then also $Y$ can be chosen with this property.
LA - eng
KW - Ramsey theory; embedding of metric spaces; distortion; Lipschitz mapping; differentiability of Lipschitz mappings; Ramsey theory; embedding of metric spaces; Lipschitz mapping; differentiability of Lipschitz mappings; distortion; finite metric space
UR - http://eudml.org/doc/247391
ER -

References

top
  1. Alon N., Milman J., Embeddings of l k in finite dimensional Banach spaces, Israel J. Math. 45 (1983), 265-280. (1983) MR0720303
  2. Aronszajn N., Differentiability of Lipschitz mappings between Fréchet spaces, Studia Math. 57 (1976), 147-190. (1976) MR0425608
  3. Bretagnolle J., Dacunha-Castelle D., Krivine J.L., Lois stables et espaces L p , Ann. Inst. H. Poincaré, Sect. B 2(1966) pp. 231-259. MR0203757
  4. Benyamini Y., The uniform classification of Banach spaces, Longhorn Notes, The Univ. of Texas at Austin, Functional analysis seminar 1984-85, pp. 15-38. Zbl1095.46005MR0832247
  5. Bourgain J., Figiel T., Milman V., On Hilbertian subspaces of finite metric spaces, Israel J. Math. 55 (1986), 147-152. (1986) MR0868175
  6. Bourgain J., Milman V., Wolfson H., On type of metric spaces, Trans. Am. Math. Soc. 294 (1986), 295-317. (1986) Zbl0617.46024MR0819949
  7. Diestel J., Uhl J.J., Jr., Vector measures, Math. Surveys 15, AMS, Providence, 1977. Zbl0521.46035MR0453964
  8. Enflo P., On a problem of Smirnov, Ark. Mat. 8 (1969), 107-109. (1969) MR0415576
  9. Enflo P., On the nonexistence of uniform homeomorphisms between L p -spaces, Ark. Mat. 8 (1969), 103-105. (1969) MR0271719
  10. Enflo P., Uniform structures and square roots in topological groups II, Israel J. Math. 8 (1970), 253-272. (1970) Zbl0214.28501MR0263969
  11. Fichet B., L p spaces in data analysis, in: Classification and related methods of data analysis, H.H. Bock ed., North Holland, 1988, pp. 439-444. 
  12. Graham R.L., Rothschild B.L., Spencer J.H., Ramsey theory, J.Wiley & sons, 1980. Zbl0705.05061MR0591457
  13. Johnson W., Schechtman G., Embedding l p m into l 1 n , Acta Math. 149 (1982), 71-85. (1982) MR0674167
  14. Kirchheim B., Geometry of measures (in Czech), thesis, Charles University, Prague, 1988. MR1029559
  15. Lindenstrauss J., On nonlinear projections in Banach spaces, Michigan Math. J. 11 (1966), 268-287. (1966) MR0167821
  16. Lindenstrauss J., Tzafriri L., Classical Banach spaces, Lecture Notes in Mathematics 338, Springer-Verlag, 1973. Zbl0852.46015MR0415253
  17. Matoušek J., Lipschitz distance of metric spaces (in Czech), CSc. degree thesis, Charles University, 1989. 
  18. Milman V.D., Schechtman G., Asymptotic theory of finite dimensional normed spaces, Lecture Notes in Mathematics 1200, Springer-Verlag, 1986. Zbl0606.46013MR0856576
  19. Nešetřil J., Ramsey Theory, Chapter for Handbook of Combinatorics, North-Holland, to appear. MR1373681
  20. Nešetřil J., Rödl V., Partition theory and its applications, in: Surveys in Combinatorics, (B. Bollobás ed.), Cambridge Univ. Press, Cambridge-London, 1979 pages 96-156. MR0561308
  21. Preiss D., Differentiability of Lipschitz functions on Banach spaces, Journal of Functional Analysis 91 (1990), 312-345. (1990) Zbl0711.46036MR1058975
  22. Schechtman G., Random embeddings of Euclidean spaces in sequence spaces, Israel J. Math. 40 (1981), 187-192. (1981) Zbl0474.46004MR0634905

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.