Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces
Commentationes Mathematicae Universitatis Carolinae (1992)
- Volume: 33, Issue: 3, page 451-463
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMatoušek, Jiří. "Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces." Commentationes Mathematicae Universitatis Carolinae 33.3 (1992): 451-463. <http://eudml.org/doc/247391>.
@article{Matoušek1992,
abstract = {Let $(X,\rho )$, $(Y,\sigma )$ be metric spaces and $f:X\rightarrow Y$ an injective mapping. We put $\Vert f\Vert _\{Lip\} = \sup \lbrace \sigma (f(x),f(y))/\rho (x,y)$; $x,y\in X$, $x\ne y\rbrace $, and $\operatorname\{dist\}(f)= \Vert f\Vert _\{Lip\}.\Vert f^\{-1\}\Vert _\{Lip\}$ (the distortion of the mapping $f$). Some Ramsey-type questions for mappings of finite metric spaces with bounded distortion are studied; e.g., the following theorem is proved: Let $X$ be a finite metric space, and let $\varepsilon >0$, $K$ be given numbers. Then there exists a finite metric space $Y$, such that for every mapping $f:Y\rightarrow Z$ ($Z$ arbitrary metric space) with $\operatorname\{dist\}(f)<K$ one can find a mapping $g:X\rightarrow Y$, such that both the mappings $g$ and $f|_\{g(X)\}$ have distortion at most $(1+\varepsilon )$. If $X$ is isometrically embeddable into a $\ell _p$ space (for some $p\in [1,\infty ]$), then also $Y$ can be chosen with this property.},
author = {Matoušek, Jiří},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Ramsey theory; embedding of metric spaces; distortion; Lipschitz mapping; differentiability of Lipschitz mappings; Ramsey theory; embedding of metric spaces; Lipschitz mapping; differentiability of Lipschitz mappings; distortion; finite metric space},
language = {eng},
number = {3},
pages = {451-463},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces},
url = {http://eudml.org/doc/247391},
volume = {33},
year = {1992},
}
TY - JOUR
AU - Matoušek, Jiří
TI - Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1992
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 33
IS - 3
SP - 451
EP - 463
AB - Let $(X,\rho )$, $(Y,\sigma )$ be metric spaces and $f:X\rightarrow Y$ an injective mapping. We put $\Vert f\Vert _{Lip} = \sup \lbrace \sigma (f(x),f(y))/\rho (x,y)$; $x,y\in X$, $x\ne y\rbrace $, and $\operatorname{dist}(f)= \Vert f\Vert _{Lip}.\Vert f^{-1}\Vert _{Lip}$ (the distortion of the mapping $f$). Some Ramsey-type questions for mappings of finite metric spaces with bounded distortion are studied; e.g., the following theorem is proved: Let $X$ be a finite metric space, and let $\varepsilon >0$, $K$ be given numbers. Then there exists a finite metric space $Y$, such that for every mapping $f:Y\rightarrow Z$ ($Z$ arbitrary metric space) with $\operatorname{dist}(f)<K$ one can find a mapping $g:X\rightarrow Y$, such that both the mappings $g$ and $f|_{g(X)}$ have distortion at most $(1+\varepsilon )$. If $X$ is isometrically embeddable into a $\ell _p$ space (for some $p\in [1,\infty ]$), then also $Y$ can be chosen with this property.
LA - eng
KW - Ramsey theory; embedding of metric spaces; distortion; Lipschitz mapping; differentiability of Lipschitz mappings; Ramsey theory; embedding of metric spaces; Lipschitz mapping; differentiability of Lipschitz mappings; distortion; finite metric space
UR - http://eudml.org/doc/247391
ER -
References
top- Alon N., Milman J., Embeddings of in finite dimensional Banach spaces, Israel J. Math. 45 (1983), 265-280. (1983) MR0720303
- Aronszajn N., Differentiability of Lipschitz mappings between Fréchet spaces, Studia Math. 57 (1976), 147-190. (1976) MR0425608
- Bretagnolle J., Dacunha-Castelle D., Krivine J.L., Lois stables et espaces , Ann. Inst. H. Poincaré, Sect. B 2(1966) pp. 231-259. MR0203757
- Benyamini Y., The uniform classification of Banach spaces, Longhorn Notes, The Univ. of Texas at Austin, Functional analysis seminar 1984-85, pp. 15-38. Zbl1095.46005MR0832247
- Bourgain J., Figiel T., Milman V., On Hilbertian subspaces of finite metric spaces, Israel J. Math. 55 (1986), 147-152. (1986) MR0868175
- Bourgain J., Milman V., Wolfson H., On type of metric spaces, Trans. Am. Math. Soc. 294 (1986), 295-317. (1986) Zbl0617.46024MR0819949
- Diestel J., Uhl J.J., Jr., Vector measures, Math. Surveys 15, AMS, Providence, 1977. Zbl0521.46035MR0453964
- Enflo P., On a problem of Smirnov, Ark. Mat. 8 (1969), 107-109. (1969) MR0415576
- Enflo P., On the nonexistence of uniform homeomorphisms between -spaces, Ark. Mat. 8 (1969), 103-105. (1969) MR0271719
- Enflo P., Uniform structures and square roots in topological groups II, Israel J. Math. 8 (1970), 253-272. (1970) Zbl0214.28501MR0263969
- Fichet B., spaces in data analysis, in: Classification and related methods of data analysis, H.H. Bock ed., North Holland, 1988, pp. 439-444.
- Graham R.L., Rothschild B.L., Spencer J.H., Ramsey theory, J.Wiley & sons, 1980. Zbl0705.05061MR0591457
- Johnson W., Schechtman G., Embedding into , Acta Math. 149 (1982), 71-85. (1982) MR0674167
- Kirchheim B., Geometry of measures (in Czech), thesis, Charles University, Prague, 1988. MR1029559
- Lindenstrauss J., On nonlinear projections in Banach spaces, Michigan Math. J. 11 (1966), 268-287. (1966) MR0167821
- Lindenstrauss J., Tzafriri L., Classical Banach spaces, Lecture Notes in Mathematics 338, Springer-Verlag, 1973. Zbl0852.46015MR0415253
- Matoušek J., Lipschitz distance of metric spaces (in Czech), CSc. degree thesis, Charles University, 1989.
- Milman V.D., Schechtman G., Asymptotic theory of finite dimensional normed spaces, Lecture Notes in Mathematics 1200, Springer-Verlag, 1986. Zbl0606.46013MR0856576
- Nešetřil J., Ramsey Theory, Chapter for Handbook of Combinatorics, North-Holland, to appear. MR1373681
- Nešetřil J., Rödl V., Partition theory and its applications, in: Surveys in Combinatorics, (B. Bollobás ed.), Cambridge Univ. Press, Cambridge-London, 1979 pages 96-156. MR0561308
- Preiss D., Differentiability of Lipschitz functions on Banach spaces, Journal of Functional Analysis 91 (1990), 312-345. (1990) Zbl0711.46036MR1058975
- Schechtman G., Random embeddings of Euclidean spaces in sequence spaces, Israel J. Math. 40 (1981), 187-192. (1981) Zbl0474.46004MR0634905
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.