Strong unicity criterion in some space of operators

Grzegorz Lewicki

Commentationes Mathematicae Universitatis Carolinae (1993)

  • Volume: 34, Issue: 1, page 81-87
  • ISSN: 0010-2628

Abstract

top
Let X be a finite dimensional Banach space and let Y X be a hyperplane. Let L Y = { L L ( X , Y ) : L Y = 0 } . In this note, we present sufficient and necessary conditions on L 0 L Y being a strongly unique best approximation for given L L ( X ) . Next we apply this characterization to the case of X = l n and to generalization of Theorem I.1.3 from [12] (see also [13]).

How to cite

top

Lewicki, Grzegorz. "Strong unicity criterion in some space of operators." Commentationes Mathematicae Universitatis Carolinae 34.1 (1993): 81-87. <http://eudml.org/doc/247466>.

@article{Lewicki1993,
abstract = {Let $X$ be a finite dimensional Banach space and let $Y\subset X$ be a hyperplane. Let $\text\{L\}\,_Y=\lbrace L\in \text\{L\}\,(X,Y):L\mid _Y=0\rbrace $. In this note, we present sufficient and necessary conditions on $L_0\in \text\{L\}\,_Y$ being a strongly unique best approximation for given $L\in \text\{L\}\,(X)$. Next we apply this characterization to the case of $X=l_\infty ^n$ and to generalization of Theorem I.1.3 from [12] (see also [13]).},
author = {Lewicki, Grzegorz},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {best approximation; strongly unique best approximation; approximation in spaces of linear operators; strongly unique best approximation},
language = {eng},
number = {1},
pages = {81-87},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Strong unicity criterion in some space of operators},
url = {http://eudml.org/doc/247466},
volume = {34},
year = {1993},
}

TY - JOUR
AU - Lewicki, Grzegorz
TI - Strong unicity criterion in some space of operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 1
SP - 81
EP - 87
AB - Let $X$ be a finite dimensional Banach space and let $Y\subset X$ be a hyperplane. Let $\text{L}\,_Y=\lbrace L\in \text{L}\,(X,Y):L\mid _Y=0\rbrace $. In this note, we present sufficient and necessary conditions on $L_0\in \text{L}\,_Y$ being a strongly unique best approximation for given $L\in \text{L}\,(X)$. Next we apply this characterization to the case of $X=l_\infty ^n$ and to generalization of Theorem I.1.3 from [12] (see also [13]).
LA - eng
KW - best approximation; strongly unique best approximation; approximation in spaces of linear operators; strongly unique best approximation
UR - http://eudml.org/doc/247466
ER -

References

top
  1. Baronti M., Franchetti C., Minimal and polar projections onto hyperplanes in the space l p and l , to appear. 
  2. Baronti M., Papini P.L., Norm one projections onto subspaces of l p , Ann. Mat. Pura Appl. IV (1988), 53-61. (1988) MR0980971
  3. Bartelt M.W., McLaughlin H.W., Characterizations of strong unicity in approximation theory, Jour. Approx. Th. 9 (1973), 255-266. (1973) Zbl0273.41019MR0372500
  4. Bartelt M.W., Schmidt D.P., On Poreda's problem on the strong unicity constants, Jour. Approx. Th. 33 (1981), 69-79. (1981) Zbl0478.41024MR0639222
  5. Blatter J., Cheney E.W., Minimal projections onto hyperplanes in sequence spaces, Ann. Mat. Pura Appl. 101 (1974), 215-227. (1974) MR0358179
  6. Cheney E.W., Introduction to Approximation Theory, McGraw-Hill, New York, 1966. Zbl0912.41001MR0222517
  7. Franchetti C., Projections onto hyperplanes in Banach spaces, Jour. Approx. Th. 38 (1983), 319-333. (1983) Zbl0516.41028MR0711458
  8. Chalmers B.L., Metcalf F.T., Taylor G.D., Strong unicity of arbitrary rate, Jour. Approx. Th. 37 (1983), 238-245. (1983) Zbl0517.41031MR0693010
  9. Laurent P.J., Approximation et Optimisation, Hermann, Paris, 1972. Zbl0238.90058MR0467080
  10. Lewicki G., Kolgomorov's type criteria for spaces of compact operators, Jour. Approx. Th. 64 (1991), 181-202. (1991) MR1091468
  11. Newman D.J., Shapiro H.S., Some theorems on Chebyshev approximations, Duke Math. J. 30 (1963), 673-681. (1963) MR0156138
  12. Odyniec Wł., Lewicki G., Minimal Projections in Banach Spaces, Lecture Notes in Math., vol. 1449 (1990), Springer-Verlag. Zbl1062.46500MR1079547
  13. Odyniec Wł., The uniqueness of minimal projection (in Russian), Izv. Vyss. Ucebn. Zavied. Matematika 3 (1978), 73-75. (1978) MR0626041
  14. Smarzewski R., Strongly unique best approximation in Banach spaces, Jour. Approx. Th. 47 (1986), 184-194. (1986) Zbl0615.41027MR0847538
  15. Sudolski J., Wȯjcik A., Some remarks on strong uniqueness of best approximation, Approx. Theory and its Appl. 6 (2), June 1990, 44-78. (2) MR1078687

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.