Köthe dual of Banach sequence spaces p [ X ] ( 1 p < ) and Grothendieck space

Cong Xin Wu; Qing Ying Bu

Commentationes Mathematicae Universitatis Carolinae (1993)

  • Volume: 34, Issue: 2, page 265-273
  • ISSN: 0010-2628

Abstract

top
In this paper, we show the representation of Köthe dual of Banach sequence spaces p [ X ] ( 1 p < ) and give a characterization of that the spaces p [ X ] ( 1 < p < ) are Grothendieck spaces.

How to cite

top

Wu, Cong Xin, and Bu, Qing Ying. "Köthe dual of Banach sequence spaces $\ell _p[X]$$(1\le p<\infty )$ and Grothendieck space." Commentationes Mathematicae Universitatis Carolinae 34.2 (1993): 265-273. <http://eudml.org/doc/247473>.

@article{Wu1993,
abstract = {In this paper, we show the representation of Köthe dual of Banach sequence spaces $\ell _p[X]$$(1\le p< \infty )$ and give a characterization of that the spaces $\ell _p[X]$$(1< p< \infty )$ are Grothendieck spaces.},
author = {Wu, Cong Xin, Bu, Qing Ying},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {vector-valued sequence space; Köthe dual; GAK-space; Grothendieck space; vector-valued sequence spaces; Köthe dual; Grothendieck space},
language = {eng},
number = {2},
pages = {265-273},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Köthe dual of Banach sequence spaces $\ell _p[X]$$(1\le p<\infty )$ and Grothendieck space},
url = {http://eudml.org/doc/247473},
volume = {34},
year = {1993},
}

TY - JOUR
AU - Wu, Cong Xin
AU - Bu, Qing Ying
TI - Köthe dual of Banach sequence spaces $\ell _p[X]$$(1\le p<\infty )$ and Grothendieck space
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 2
SP - 265
EP - 273
AB - In this paper, we show the representation of Köthe dual of Banach sequence spaces $\ell _p[X]$$(1\le p< \infty )$ and give a characterization of that the spaces $\ell _p[X]$$(1< p< \infty )$ are Grothendieck spaces.
LA - eng
KW - vector-valued sequence space; Köthe dual; GAK-space; Grothendieck space; vector-valued sequence spaces; Köthe dual; Grothendieck space
UR - http://eudml.org/doc/247473
ER -

References

top
  1. Leonard I.E., Banach sequence spaces, J. Math. Anal. Appl. 54 (1976), 245-265. (1976) Zbl0343.46010MR0420216
  2. Wu Congxin, Bu Qingying, The vector-valued sequence spaces p ( X ) ( 1 p < ) and Banach spaces not containing a copy of c 0 , A Friendly Collection of Mathematical Papers I, Jilin Univ. Press, Changchun, China, 1990, 9-16. 
  3. Wu Congxin, Bu Qingying, Banach sequence spaces p [ X ] ( 1 p < ) and their properties, to appear. 
  4. Gupta M., Kamthan P.K., Patterson J., Duals of generalized sequence spaces, J. Math. Anal. Appl. 82 (1981), 152-168. (1981) Zbl0492.46010MR0626746
  5. Diestel J., Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, SpringerVerlag, 1984. MR0737004
  6. Simons S., Locally reflexivity and ( p , q ) -summing maps, Math. Ann. 198 (1972), 335-344. (1972) MR0326353
  7. Diestel J. Uhl J.J., Vector Measures, Amer. Math. Soc. Surveys 15, Providence, 1977. MR0453964
  8. Kamthan P.K., Gupta M., Sequence Spaces and Series, Lecture Notes 65, Dekker, New York, 1981. Zbl0447.46002MR0606740

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.