A finite dimensional reduction of the Schauder Conjecture

Espedito De Pascale

Commentationes Mathematicae Universitatis Carolinae (1993)

  • Volume: 34, Issue: 3, page 401-404
  • ISSN: 0010-2628

Abstract

top
Schauder’s Conjecture (i.eėvery compact convex set in a Hausdorff topological vector space has the f.p.p.) is reduced to the search for fixed points of suitable multivalued maps in finite dimensional spaces.

How to cite

top

De Pascale, Espedito. "A finite dimensional reduction of the Schauder Conjecture." Commentationes Mathematicae Universitatis Carolinae 34.3 (1993): 401-404. <http://eudml.org/doc/247495>.

@article{DePascale1993,
abstract = {Schauder’s Conjecture (i.eėvery compact convex set in a Hausdorff topological vector space has the f.p.p.) is reduced to the search for fixed points of suitable multivalued maps in finite dimensional spaces.},
author = {De Pascale, Espedito},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {compact convex set; fixed point property; multivalued map; local convexity; topological vector space; Schauder Conjecture; Schauder's conjecture; fixed points; multivalued map},
language = {eng},
number = {3},
pages = {401-404},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A finite dimensional reduction of the Schauder Conjecture},
url = {http://eudml.org/doc/247495},
volume = {34},
year = {1993},
}

TY - JOUR
AU - De Pascale, Espedito
TI - A finite dimensional reduction of the Schauder Conjecture
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 3
SP - 401
EP - 404
AB - Schauder’s Conjecture (i.eėvery compact convex set in a Hausdorff topological vector space has the f.p.p.) is reduced to the search for fixed points of suitable multivalued maps in finite dimensional spaces.
LA - eng
KW - compact convex set; fixed point property; multivalued map; local convexity; topological vector space; Schauder Conjecture; Schauder's conjecture; fixed points; multivalued map
UR - http://eudml.org/doc/247495
ER -

References

top
  1. Aubin J.P., Frankowska H., Set-Valued Analysis, Birkhäuser, 1990. Zbl1168.49014MR1048347
  2. Borisovich Yu.G., Gel'man B.D., Myshkis A.D., Obukhovskii V.V., Topological methods in the theory of fixed points of multivalued mappings, Russian Math. Surveys 35 (1980), 65-143. (1980) MR0565568
  3. Borisovich Yu.G., Gel'man B.D., Myshkis A.D., Obukhovskii V.V., Multivalued mappings, J. Sov. Math. (1984), 719-791. (1984) 
  4. Bourgin D.G., A degree for nonacyclic multiple-valued transformation, Bull. Amer. Math. Soc. 80 (1974), 59-61. (1974) MR0326505
  5. Bourgin D.G., A generalization of the mapping degree, Can. J. Math. 26 (1974), 1109-1117. (1974) Zbl0303.55004MR0365552
  6. Connelly R., An extension of Brower's fixed-point theorem to nonacyclic, set-valued functions, Proc. Amer. Math. Soc. 43 (1974), 214-218. (1974) MR0339144
  7. Dzedzey Z., Fixed point index theory for a class of nonacyclic multivalued maps, Diss. Math. CCLIII (1985). 
  8. Eilenberg S., Montgomery D., Fixed point theorems for multivalued transformations, Amer. J. Math. 58 (1946), 214-222. (1946) Zbl0060.40203MR0016676
  9. Fan K., Sur un théorème minimax, C. R. Acad. Sci. Paris, Groupe 1, 259 (1962), 3925-3928. (1962) MR0174955
  10. Gorniewicz L., Fixed point theorems for multivalued maps of subsets of Euclidean spaces, Bull. Pol. Acad. Sci., Math. 27 (1979), 111-115. (1979) MR0539341
  11. Granas A., K K M-maps and their applications to non linear problems, see 16, 45-61. 
  12. Hadžic O., Fixed point theory in topological vector spaces, University of Novi Sad, Novi Sad, 1984. MR0789224
  13. Idzik A., On γ - almost fixed point theorems. The single valued case, Bull. Pol. Acad. Sci. Math. 35 (1987), 461-464. (1987) Zbl0663.47036MR0939008
  14. Kalton N.J., An F -space with trivial dual where the Krein-Milman theorem holds, Israel J. Math. 36 (1980), 41-49. (1980) Zbl0439.46022MR0589656
  15. Krauthausen C., Der Fixpunktsatz von Schauder in nicht notwendig Konvexen Räumen sowie Anwendungen auf Hammerstein'sche Gleichungen, Dissertation, TH Aachen, 1976. 
  16. Mauldin R.D. editor, The Scottish Book, Birkhäuser, 1981. MR0666400
  17. O'Neill B., A fixed point theorem for multivalued functions, Duke Math. J. 24 (1957), 61-62. (1957) 
  18. O'Neill B., Induced homology homomorphism for set-valued maps, Pac. J. Math. 7 (1957), 1179-1184. (1957) MR0104226
  19. Powers M.J., Lefschetz fixed point theorems for a new class of multivalued maps, Pac. J. Math. 42 (1972), 211-220. (1972) MR0334189
  20. Schauder J., Der Fixpunktsatz in Funktionalräumen, Studia Math. 2 (1930), 171-180. (1930) 
  21. Tychonoff A., Ein Fixpunktsatz, Math. Ann. 111 (1935), 767-776. (1935) Zbl0012.30803MR1513031
  22. Weber H., Compact convex sets in non locally convex linear spaces, to appear in Note Mat., 1992. Zbl0846.46004MR1258580

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.