On the topological structure of compact 5-manifolds
Alberto Cavicchioli; Fulvia Spaggiari
Commentationes Mathematicae Universitatis Carolinae (1993)
- Volume: 34, Issue: 3, page 513-524
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCavicchioli, Alberto, and Spaggiari, Fulvia. "On the topological structure of compact 5-manifolds." Commentationes Mathematicae Universitatis Carolinae 34.3 (1993): 513-524. <http://eudml.org/doc/247501>.
@article{Cavicchioli1993,
abstract = {We classify the genus one compact (PL) 5-manifolds and prove some results about closed 5-manifolds with free fundamental group. In particular, let $M$ be a closed connected orientable smooth $5$-manifold with free fundamental group. Then we prove that the number of distinct smooth $5$-manifolds homotopy equivalent to $M$ equals the $2$-nd Betti number (mod $2$) of $M$.},
author = {Cavicchioli, Alberto, Spaggiari, Fulvia},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {colored graph; crystallization; genus; manifold; surgery; s-cobordism; normal invariants; homotopy type; bundles over ; bundles over the 1-sphere; classification; free fundamental group; compact PL manifold; genus; smooth 5-manifolds},
language = {eng},
number = {3},
pages = {513-524},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the topological structure of compact 5-manifolds},
url = {http://eudml.org/doc/247501},
volume = {34},
year = {1993},
}
TY - JOUR
AU - Cavicchioli, Alberto
AU - Spaggiari, Fulvia
TI - On the topological structure of compact 5-manifolds
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 3
SP - 513
EP - 524
AB - We classify the genus one compact (PL) 5-manifolds and prove some results about closed 5-manifolds with free fundamental group. In particular, let $M$ be a closed connected orientable smooth $5$-manifold with free fundamental group. Then we prove that the number of distinct smooth $5$-manifolds homotopy equivalent to $M$ equals the $2$-nd Betti number (mod $2$) of $M$.
LA - eng
KW - colored graph; crystallization; genus; manifold; surgery; s-cobordism; normal invariants; homotopy type; bundles over ; bundles over the 1-sphere; classification; free fundamental group; compact PL manifold; genus; smooth 5-manifolds
UR - http://eudml.org/doc/247501
ER -
References
top- Barden D., Simply connected five-manifolds, Ann. of Math. 82 (1965), 365-385. (1965) Zbl0136.20602MR0184241
- Bracho J., Montejano L., The combinatorics of colored triangulations of manifolds, Geom. Dedicata 22 (1987), 303-328. (1987) Zbl0631.57017MR0887580
- Cappell S., Mayer-Vietoris sequences in hermitian -theory, preprint. Zbl0298.57021MR0358814
- Cavicchioli A., A combinatorial characterization of among closed 4-manifolds, Proc. Amer. Math. Soc. 105 (1989), 1008-1014. (1989) MR0931726
- Ferri M., Gagliardi C., Grasselli L., A graph-theoretical representation of PL-manifolds. A survey on crystallizations, Aequationes Math. 31 (1986), 121-141. (1986) Zbl0623.57012MR0867510
- Mandelbaum R., Four-dimensional topology: an introduction, Bull. Amer. Math. Soc. 2 (1980), 1-159. (1980) Zbl0476.57005MR0551752
- Milnor J.W., A procedure for killing the homotopy groups of differentiable manifolds, in Proc. Symp. in Pure Math. (Differential Geometry), Amer. Math. Soc. 3 (1961), 39-55. (1961) MR0130696
- Milnor J., Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426. (1966) Zbl0147.23104MR0196736
- Rourke C.P., Sanderson B.J., Introduction to piecewise-linear topology, Springer-Verlag Ed., Berlin-Heidelberg-New York, 1972. Zbl0477.57003MR0350744
- Shaneson J.L., Wall’s surgery obstruction groups for , Ann. of Math. 90 (1969), 296-334. (1969) MR0246310
- Shaneson J.L., Non-simply connected surgery and some results in low dimension topology, Comm. Math. Helv. 45 (1970), 333-352. (1970) MR0275444
- Shaneson J.L., On non-simply connected manifolds, in Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, Rhode Island 22 (1970), 221-229. (1970) Zbl0226.57007MR0358816
- Smale S., On the structure of 5-manifolds, Ann. of Math. 75 (1962), 38-46. (1962) Zbl0101.16103MR0141133
- Wall C.T.C., Surgery on Compact Manifolds, Academic Press, London-New York, 1970. Zbl0935.57003MR0431216
- White A.T., Graphs, Groups and Surfaces, North Holland Ed., Amsterdam, 1973. Zbl0551.05037
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.