A note on a theorem of Klee

Jerzy Kąkol

Commentationes Mathematicae Universitatis Carolinae (1993)

  • Volume: 34, Issue: 1, page 79-80
  • ISSN: 0010-2628

Abstract

top
It is proved that if E , F are separable quasi-Banach spaces, then E × F contains a dense dual-separating subspace if either E or F has this property.

How to cite

top

Kąkol, Jerzy. "A note on a theorem of Klee." Commentationes Mathematicae Universitatis Carolinae 34.1 (1993): 79-80. <http://eudml.org/doc/247503>.

@article{Kąkol1993,
abstract = {It is proved that if $E,F$ are separable quasi-Banach spaces, then $E\times F$ contains a dense dual-separating subspace if either $E$ or $F$ has this property.},
author = {Kąkol, Jerzy},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$F$-spaces; quasi-Banach spaces; -spaces; separable quasi-Banach spaces; dense dual-separating subspace},
language = {eng},
number = {1},
pages = {79-80},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on a theorem of Klee},
url = {http://eudml.org/doc/247503},
volume = {34},
year = {1993},
}

TY - JOUR
AU - Kąkol, Jerzy
TI - A note on a theorem of Klee
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 1
SP - 79
EP - 80
AB - It is proved that if $E,F$ are separable quasi-Banach spaces, then $E\times F$ contains a dense dual-separating subspace if either $E$ or $F$ has this property.
LA - eng
KW - $F$-spaces; quasi-Banach spaces; -spaces; separable quasi-Banach spaces; dense dual-separating subspace
UR - http://eudml.org/doc/247503
ER -

References

top
  1. Day M.M., The spaces L p with 0 < p < 1 , Bull. Amer. Math. Soc. 46 (1940), 816-823. (1940) MR0002700
  2. Klee V.L., Exotic Topologies for Linear Spaces, Proc. Symposium on General Topology and its Relations to Modern Algebra, Prague, 1961. Zbl0111.10701MR0154088
  3. Labuda I., Lipecki Z., On subseries convergent series and m - quasi bases in topological linear spaces, Manuscripta Math. 38 (1982), 87-98. (1982) Zbl0496.46006MR0662771
  4. Lipecki Z., On some dense subspaces in topological linear spaces, Studia Math. 77 (1984), 413-421. (1984) MR0751762
  5. Rolewicz S., Metric Linear Spaces, Monografie Mat. 56, PWN, Warszawa, 1972. Zbl0573.46001MR0438074

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.