Convergence theorems for set-valued conditional expectations
Commentationes Mathematicae Universitatis Carolinae (1993)
- Volume: 34, Issue: 1, page 97-104
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPapageorgiou, Nikolaos S.. "Convergence theorems for set-valued conditional expectations." Commentationes Mathematicae Universitatis Carolinae 34.1 (1993): 97-104. <http://eudml.org/doc/247504>.
@article{Papageorgiou1993,
abstract = {In this paper we prove two convergence theorems for set-valued conditional expectations. The first is a set-valued generalization of Levy’s martingale convergence theorem, while the second involves a nonmonotone sequence of sub $\sigma $-fields.},
author = {Papageorgiou, Nikolaos S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {measurable multifunction; set-valued conditional expectation; Levy's theorem; support function; Kuratowski-Mosco convergence of sets; Kuratowski-Mosco convergence; random set; convergence theorems; set- valued conditional expectations; integrable selectors},
language = {eng},
number = {1},
pages = {97-104},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Convergence theorems for set-valued conditional expectations},
url = {http://eudml.org/doc/247504},
volume = {34},
year = {1993},
}
TY - JOUR
AU - Papageorgiou, Nikolaos S.
TI - Convergence theorems for set-valued conditional expectations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 1
SP - 97
EP - 104
AB - In this paper we prove two convergence theorems for set-valued conditional expectations. The first is a set-valued generalization of Levy’s martingale convergence theorem, while the second involves a nonmonotone sequence of sub $\sigma $-fields.
LA - eng
KW - measurable multifunction; set-valued conditional expectation; Levy's theorem; support function; Kuratowski-Mosco convergence of sets; Kuratowski-Mosco convergence; random set; convergence theorems; set- valued conditional expectations; integrable selectors
UR - http://eudml.org/doc/247504
ER -
References
top- Alo R., deKorvin A., Roberts R., The optional sampling theorem for convex set valued martingales, J. Reine Angew. Math. 310 (1979), 1-6. (1979) MR0546661
- Artstein Z., Hart S., Law of large numbers for random sets and allocation processes, Math. Oper. Res. 6 (1981), 485-492. (1981) Zbl0524.28015MR0703091
- Attouch H., Famille d'opérateurs maximaux monotones et mesurabilité, Ann. Mat. Pura ed Appl. 120 (1979), 35-111. (1979) MR0551062
- Diestel J. Uhl J., Vector Measures, Math. Surveys, vol. 15, AMS, Providence, RI, 1977. MR0453964
- Dynkin E., Evstigneev I., Regular conditional expectations of correspondences, Theory of Prob. and Appl. 21 (1976), 325-338. (1976) Zbl0367.60002MR0430204
- Fetter H., On the continuity of conditional expectations, J. Math. Anal. Appl. 61 (1977), 227-231. (1977) Zbl0415.60003MR0455110
- Hanen A., Neveu J., Atomes conditionels d'un espace de probabilité, Acta Math. Hungarica 17 (1966), 443-449. (1966) MR0205285
- Hess C., Measurability and integrability of the weak upper limit of a sequence of multifunctions, J. Math. Anal. Appl. 153 (1990), 206-249. (1990) Zbl0748.47046MR1080128
- Hiai F., Radon-Nikodym theorems for set-valued measures, J. Multiv. Anal. 8 (1978), 96-118. (1978) Zbl0384.28006MR0583862
- Hiai F., Umegaki H., Integrals, conditional expectations and martingales of multivalued functions, J. Multiv. Anal. 7 (1977), 149-182. (1977) Zbl0368.60006MR0507504
- deKorvin A., Kleyle R., A convergence theorem for convex set-valued supermartingales, Stoch. Anal. Appl. 3 (1985), 433-445. (1985) MR0808943
- Luu D.Q., Quelques resultats de representation des amarts uniforms multivoques, C.R. Acad. Su. Paris 300 (1985), 63-63. (1985)
- Metivier M., Semimartingales, DeGruyter, Berlin 1982. Zbl0595.60008MR0688144
- Mosco U., Convergence of convex sets and solutions of variational inequalities, Advances in Math. 3 (1969), 510-585. (1969) MR0298508
- Papageorgiou N.S., On the efficiency and optimality of allocations II, SIAM J. Control Optim. 24 (1986), 452-479. (1986) Zbl0589.90015MR0838050
- Papageorgiou N.S., Convergence theorem for Banach space valued integrable multifunctions, Intern. J. Math. and Math. Sci. 10 (1987), 433-442. (1987) MR0896595
- Papageorgiou N.S., On the theory of Banach space valued multifunctions. Part 1: Integration and conditional expectation, J. Multiv. Anal. 17 (1985), 185-206. (1985) MR0808276
- Papageorgiou N.S., On the theory of Banach space valued multifunctions. Part 2: Set valued martingales and set valued measures, J. Multiv. Anal. 17 (1985), 207-227. (1985) MR0808277
- Papageorgiou N.S., A convergence theorem for set-valued supermartingales in a separable Banach space, Stoch. Anal. Appl. 5 (1988), 405-422. (1988) MR0912867
- Papageorgiou N.S., Kandilakis D., Convergence in approximation and nonsmooth analysis, J. Approx. Theory 49 (1987), 41-54. (1987) Zbl0619.41033MR0870548
- Salinetti G. Wets R., On the convergence of sequences of convex sets in finite dimensions, SIAM Review 21 (1979), 18-33. (1979) MR0516381
- Thibault L., Esperances conditionelles d'integrandes semicontinus, Ann. Inst. H. Poincaré Ser. B 17 (1981), 337-350. (1981) MR0644351
- Wagner D., Survey of measurable selection theorems, SIAM J. Control Optim. 15 (1977), 859-903. (1977) Zbl0407.28006MR0486391
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.