Convergence theorems for set-valued conditional expectations

Nikolaos S. Papageorgiou

Commentationes Mathematicae Universitatis Carolinae (1993)

  • Volume: 34, Issue: 1, page 97-104
  • ISSN: 0010-2628

Abstract

top
In this paper we prove two convergence theorems for set-valued conditional expectations. The first is a set-valued generalization of Levy’s martingale convergence theorem, while the second involves a nonmonotone sequence of sub σ -fields.

How to cite

top

Papageorgiou, Nikolaos S.. "Convergence theorems for set-valued conditional expectations." Commentationes Mathematicae Universitatis Carolinae 34.1 (1993): 97-104. <http://eudml.org/doc/247504>.

@article{Papageorgiou1993,
abstract = {In this paper we prove two convergence theorems for set-valued conditional expectations. The first is a set-valued generalization of Levy’s martingale convergence theorem, while the second involves a nonmonotone sequence of sub $\sigma $-fields.},
author = {Papageorgiou, Nikolaos S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {measurable multifunction; set-valued conditional expectation; Levy's theorem; support function; Kuratowski-Mosco convergence of sets; Kuratowski-Mosco convergence; random set; convergence theorems; set- valued conditional expectations; integrable selectors},
language = {eng},
number = {1},
pages = {97-104},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Convergence theorems for set-valued conditional expectations},
url = {http://eudml.org/doc/247504},
volume = {34},
year = {1993},
}

TY - JOUR
AU - Papageorgiou, Nikolaos S.
TI - Convergence theorems for set-valued conditional expectations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 1
SP - 97
EP - 104
AB - In this paper we prove two convergence theorems for set-valued conditional expectations. The first is a set-valued generalization of Levy’s martingale convergence theorem, while the second involves a nonmonotone sequence of sub $\sigma $-fields.
LA - eng
KW - measurable multifunction; set-valued conditional expectation; Levy's theorem; support function; Kuratowski-Mosco convergence of sets; Kuratowski-Mosco convergence; random set; convergence theorems; set- valued conditional expectations; integrable selectors
UR - http://eudml.org/doc/247504
ER -

References

top
  1. Alo R., deKorvin A., Roberts R., The optional sampling theorem for convex set valued martingales, J. Reine Angew. Math. 310 (1979), 1-6. (1979) MR0546661
  2. Artstein Z., Hart S., Law of large numbers for random sets and allocation processes, Math. Oper. Res. 6 (1981), 485-492. (1981) Zbl0524.28015MR0703091
  3. Attouch H., Famille d'opérateurs maximaux monotones et mesurabilité, Ann. Mat. Pura ed Appl. 120 (1979), 35-111. (1979) MR0551062
  4. Diestel J. Uhl J., Vector Measures, Math. Surveys, vol. 15, AMS, Providence, RI, 1977. MR0453964
  5. Dynkin E., Evstigneev I., Regular conditional expectations of correspondences, Theory of Prob. and Appl. 21 (1976), 325-338. (1976) Zbl0367.60002MR0430204
  6. Fetter H., On the continuity of conditional expectations, J. Math. Anal. Appl. 61 (1977), 227-231. (1977) Zbl0415.60003MR0455110
  7. Hanen A., Neveu J., Atomes conditionels d'un espace de probabilité, Acta Math. Hungarica 17 (1966), 443-449. (1966) MR0205285
  8. Hess C., Measurability and integrability of the weak upper limit of a sequence of multifunctions, J. Math. Anal. Appl. 153 (1990), 206-249. (1990) Zbl0748.47046MR1080128
  9. Hiai F., Radon-Nikodym theorems for set-valued measures, J. Multiv. Anal. 8 (1978), 96-118. (1978) Zbl0384.28006MR0583862
  10. Hiai F., Umegaki H., Integrals, conditional expectations and martingales of multivalued functions, J. Multiv. Anal. 7 (1977), 149-182. (1977) Zbl0368.60006MR0507504
  11. deKorvin A., Kleyle R., A convergence theorem for convex set-valued supermartingales, Stoch. Anal. Appl. 3 (1985), 433-445. (1985) MR0808943
  12. Luu D.Q., Quelques resultats de representation des amarts uniforms multivoques, C.R. Acad. Su. Paris 300 (1985), 63-63. (1985) 
  13. Metivier M., Semimartingales, DeGruyter, Berlin 1982. Zbl0595.60008MR0688144
  14. Mosco U., Convergence of convex sets and solutions of variational inequalities, Advances in Math. 3 (1969), 510-585. (1969) MR0298508
  15. Papageorgiou N.S., On the efficiency and optimality of allocations II, SIAM J. Control Optim. 24 (1986), 452-479. (1986) Zbl0589.90015MR0838050
  16. Papageorgiou N.S., Convergence theorem for Banach space valued integrable multifunctions, Intern. J. Math. and Math. Sci. 10 (1987), 433-442. (1987) MR0896595
  17. Papageorgiou N.S., On the theory of Banach space valued multifunctions. Part 1: Integration and conditional expectation, J. Multiv. Anal. 17 (1985), 185-206. (1985) MR0808276
  18. Papageorgiou N.S., On the theory of Banach space valued multifunctions. Part 2: Set valued martingales and set valued measures, J. Multiv. Anal. 17 (1985), 207-227. (1985) MR0808277
  19. Papageorgiou N.S., A convergence theorem for set-valued supermartingales in a separable Banach space, Stoch. Anal. Appl. 5 (1988), 405-422. (1988) MR0912867
  20. Papageorgiou N.S., Kandilakis D., Convergence in approximation and nonsmooth analysis, J. Approx. Theory 49 (1987), 41-54. (1987) Zbl0619.41033MR0870548
  21. Salinetti G. Wets R., On the convergence of sequences of convex sets in finite dimensions, SIAM Review 21 (1979), 18-33. (1979) MR0516381
  22. Thibault L., Esperances conditionelles d'integrandes semicontinus, Ann. Inst. H. Poincaré Ser. B 17 (1981), 337-350. (1981) MR0644351
  23. Wagner D., Survey of measurable selection theorems, SIAM J. Control Optim. 15 (1977), 859-903. (1977) Zbl0407.28006MR0486391

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.