On a class of commutative groupoids determined by their associativity triples
Commentationes Mathematicae Universitatis Carolinae (1993)
- Volume: 34, Issue: 2, page 199-201
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDrápal, Aleš. "On a class of commutative groupoids determined by their associativity triples." Commentationes Mathematicae Universitatis Carolinae 34.2 (1993): 199-201. <http://eudml.org/doc/247508>.
@article{Drápal1993,
abstract = {Let $G = G(\cdot )$ be a commutative groupoid such that $\lbrace (a,b,c) \in G^3$; $a\cdot bc \ne ab\cdot c\rbrace = \lbrace (a,b,c) \in G^3$; $a=b\ne c$ or $ a \ne b =c \rbrace $. Then $G$ is determined uniquely up to isomorphism and if it is finite, then $\operatorname\{card\}(G) = 2^i$ for an integer $i\ge 0$.},
author = {Drápal, Aleš},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {commutative groupoid; associative triples; commutative groupoid},
language = {eng},
number = {2},
pages = {199-201},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On a class of commutative groupoids determined by their associativity triples},
url = {http://eudml.org/doc/247508},
volume = {34},
year = {1993},
}
TY - JOUR
AU - Drápal, Aleš
TI - On a class of commutative groupoids determined by their associativity triples
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 2
SP - 199
EP - 201
AB - Let $G = G(\cdot )$ be a commutative groupoid such that $\lbrace (a,b,c) \in G^3$; $a\cdot bc \ne ab\cdot c\rbrace = \lbrace (a,b,c) \in G^3$; $a=b\ne c$ or $ a \ne b =c \rbrace $. Then $G$ is determined uniquely up to isomorphism and if it is finite, then $\operatorname{card}(G) = 2^i$ for an integer $i\ge 0$.
LA - eng
KW - commutative groupoid; associative triples; commutative groupoid
UR - http://eudml.org/doc/247508
ER -
References
top- Drápal A., Kepka T., Sets of associative triples, Europ. J. Combinatorics 6 (1985), 227-231. (1985) MR0818596
- Drápal A., Groupoids with non-associative triples on the diagonal, Czech. Math. Journal 35 (1985), 555-564. (1985) MR0809042
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.