-absorbing sequences in hyperspaces of subcontinua
Commentationes Mathematicae Universitatis Carolinae (1993)
- Volume: 34, Issue: 4, page 729-745
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGladdines, Helma. "$F_\sigma $-absorbing sequences in hyperspaces of subcontinua." Commentationes Mathematicae Universitatis Carolinae 34.4 (1993): 729-745. <http://eudml.org/doc/247511>.
@article{Gladdines1993,
abstract = {Let $\mathcal \{D\}$ denote a true dimension function, i.e., a dimension function such that $\mathcal \{D\}(\mathbb \{R\}^n) = n$ for all $n$. For a space $X$, we denote the hyperspace consisting of all compact connected, non-empty subsets by $C(X)$. If $X$ is a countable infinite product of non-degenerate Peano continua, then the sequence $(\mathcal \{D\}_\{\ge n\}(C(X)))_\{n=2\}^\infty $ is $F_\sigma $-absorbing in $C(X)$. As a consequence, there is a homeomorphism $h: C(X)\rightarrow Q^\infty $ such that for all $n$, $h[\lbrace A \in C(X) : \mathcal \{D\}(A) \ge n+1\rbrace ] = B^n \times Q \times Q \times \dots $, where $B$ denotes the pseudo boundary of the Hilbert cube $Q$. It follows that if $X$ is a countable infinite product of non-degenerate Peano continua then $\mathcal \{D\}_\{\ge n\}(C(X))$ is an $F_\sigma $-absorber (capset) for $C(X)$, for every $n \ge 2$. Let $\operatorname\{dim\}$ denote covering dimension. It is known that there is an example of an everywhere infinite dimensional Peano continuum $X$ that contains arbitrary large $n$-cubes, such that for every $k \in \mathbb \{N\}$, the sequence $(\operatorname\{dim\}_\{\ge n\}(C(X^k)))_\{n=2\}^\infty $ is not $F_\sigma $-absorbing in $C(X^k)$. So our result is in some sense the best possible.},
author = {Gladdines, Helma},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Hilbert cube; absorbing system; $F_\sigma $; $F_\{\sigma \delta \}$; capset; Peano continuum; hyperspace; hyperspace of subcontinua; covering dimension; cohomological dimension; countable infinite product of non-degenerate Peano continua; hyperspace of all subcontinua; pseudo-boundary of the Hilbert cube; covering dimension; cohomological dimension},
language = {eng},
number = {4},
pages = {729-745},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$F_\sigma $-absorbing sequences in hyperspaces of subcontinua},
url = {http://eudml.org/doc/247511},
volume = {34},
year = {1993},
}
TY - JOUR
AU - Gladdines, Helma
TI - $F_\sigma $-absorbing sequences in hyperspaces of subcontinua
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 4
SP - 729
EP - 745
AB - Let $\mathcal {D}$ denote a true dimension function, i.e., a dimension function such that $\mathcal {D}(\mathbb {R}^n) = n$ for all $n$. For a space $X$, we denote the hyperspace consisting of all compact connected, non-empty subsets by $C(X)$. If $X$ is a countable infinite product of non-degenerate Peano continua, then the sequence $(\mathcal {D}_{\ge n}(C(X)))_{n=2}^\infty $ is $F_\sigma $-absorbing in $C(X)$. As a consequence, there is a homeomorphism $h: C(X)\rightarrow Q^\infty $ such that for all $n$, $h[\lbrace A \in C(X) : \mathcal {D}(A) \ge n+1\rbrace ] = B^n \times Q \times Q \times \dots $, where $B$ denotes the pseudo boundary of the Hilbert cube $Q$. It follows that if $X$ is a countable infinite product of non-degenerate Peano continua then $\mathcal {D}_{\ge n}(C(X))$ is an $F_\sigma $-absorber (capset) for $C(X)$, for every $n \ge 2$. Let $\operatorname{dim}$ denote covering dimension. It is known that there is an example of an everywhere infinite dimensional Peano continuum $X$ that contains arbitrary large $n$-cubes, such that for every $k \in \mathbb {N}$, the sequence $(\operatorname{dim}_{\ge n}(C(X^k)))_{n=2}^\infty $ is not $F_\sigma $-absorbing in $C(X^k)$. So our result is in some sense the best possible.
LA - eng
KW - Hilbert cube; absorbing system; $F_\sigma $; $F_{\sigma \delta }$; capset; Peano continuum; hyperspace; hyperspace of subcontinua; covering dimension; cohomological dimension; countable infinite product of non-degenerate Peano continua; hyperspace of all subcontinua; pseudo-boundary of the Hilbert cube; covering dimension; cohomological dimension
UR - http://eudml.org/doc/247511
ER -
References
top- Bessaga C., Pełczyński A., Selected topics in infinite-dimensional topology, PWN, Warszawa, 1975.
- Bing R.H., Partitioning a set, Bull. Amer. Math. Soc. 55 (1949), 1101-1110. (1949) Zbl0036.11702MR0035429
- Curtis D.W., Boundary sets in the Hilbert cube, Top. Appl. 20 (1985), 201-221. (1985) Zbl0575.57008MR0804034
- Curtis D.W., Nhu N.T., Hyperspaces of finite subsets which are homeomorphic to -dimensional linear metric space, Top. Appl. 19 (1985), 251-260. (1985) MR0794488
- Curtis D.W., Michael M., Boundary sets for growth hyperspaces, Top. Appl. 25 (1987), 269-283. (1987) Zbl0627.54004MR0889871
- Gladdines H., van Mill J., Hyperspaces of infinite-dimensional compacta, Comp. Math. 88 (1993), 143-153. (1993) Zbl0830.57013MR1237918
- Gladdines H., -absorbing sequences in hyperspaces of compact sets, Bull. Pol. Ac. Sci. vol 40 (3) (1992). (1992) MR1401869
- Gladdines H., Baars J., van Mill J., Absorbing systems in infinite-dimensional manifolds, Topology Appl. 50 (1993), 147-182. (1993) Zbl0794.57005MR1217483
- Dobrowolski T., Rubin L.R., The hyperspace of infinite-dimensional compacta for covering and cohomological dimension are homeomorphic, preprint, to appear. MR1267500
- Dijkstra J.J., van Mill J., Mogilski J., The space of infinite-dimensional compact spaces and other topological copies of , Pac. J. Math. 152 (1992), 255-273. (1992) MR1141795
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.