A generalization of a theorem of Erdös on asymptotic basis of order 2

Martin Helm

Journal de théorie des nombres de Bordeaux (1994)

  • Volume: 6, Issue: 1, page 9-19
  • ISSN: 1246-7405

Abstract

top
Let 𝒯 be a system of disjoint subsets of * . In this paper we examine the existence of an increasing sequence of natural numbers, A , that is an asymptotic basis of all infinite elements T j of 𝒯 simultaneously, satisfying certain conditions on the rate of growth of the number of representations 𝑟 𝑛 ( 𝐴 ) ; 𝑟 𝑛 ( 𝐴 ) : = ( 𝑎 𝑖 , 𝑎 𝑗 ) : 𝑎 𝑖 < 𝑎 𝑗 ; 𝑎 𝑖 , 𝑎 𝑗 𝐴 ; 𝑛 = 𝑎 𝑖 + 𝑎 𝑗 , for all sufficiently large n T j and j * A theorem of P. Erdös is generalized.

How to cite

top

Helm, Martin. "A generalization of a theorem of Erdös on asymptotic basis of order $2$." Journal de théorie des nombres de Bordeaux 6.1 (1994): 9-19. <http://eudml.org/doc/247530>.

@article{Helm1994,
abstract = {Let $\mathcal \{T\}$ be a system of disjoint subsets of $\mathbb \{N\}^*$. In this paper we examine the existence of an increasing sequence of natural numbers, $A$, that is an asymptotic basis of all infinite elements $T_j$ of $\mathcal \{T\}$ simultaneously, satisfying certain conditions on the rate of growth of the number of representations $\it \{r\} _n ( A); \it \{r\} _n(A) :=\left|\left\lbrace (a_i,a_j): a_i &lt; a_j; a_i, a_j \in A; n = a_i + a_j \right\rbrace \right|$, for all sufficiently large $n \in T_j$ and $j \in \mathbb \{N\}^*$ A theorem of P. Erdös is generalized.},
author = {Helm, Martin},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {asymptotic basis of order 2; additive bases},
language = {eng},
number = {1},
pages = {9-19},
publisher = {Université Bordeaux I},
title = {A generalization of a theorem of Erdös on asymptotic basis of order $2$},
url = {http://eudml.org/doc/247530},
volume = {6},
year = {1994},
}

TY - JOUR
AU - Helm, Martin
TI - A generalization of a theorem of Erdös on asymptotic basis of order $2$
JO - Journal de théorie des nombres de Bordeaux
PY - 1994
PB - Université Bordeaux I
VL - 6
IS - 1
SP - 9
EP - 19
AB - Let $\mathcal {T}$ be a system of disjoint subsets of $\mathbb {N}^*$. In this paper we examine the existence of an increasing sequence of natural numbers, $A$, that is an asymptotic basis of all infinite elements $T_j$ of $\mathcal {T}$ simultaneously, satisfying certain conditions on the rate of growth of the number of representations $\it {r} _n ( A); \it {r} _n(A) :=\left|\left\lbrace (a_i,a_j): a_i &lt; a_j; a_i, a_j \in A; n = a_i + a_j \right\rbrace \right|$, for all sufficiently large $n \in T_j$ and $j \in \mathbb {N}^*$ A theorem of P. Erdös is generalized.
LA - eng
KW - asymptotic basis of order 2; additive bases
UR - http://eudml.org/doc/247530
ER -

References

top
  1. [1] P. Erdös, Problems and results in additive number theory, Colloque sur la Théorie des Nombres (CBRM), Bruxelles (1956), 127-137. Zbl0073.03102MR79027
  2. [2] P. Erdös and A. Rényi, Additive properties of random sequences of positive integers, Acta Arith.6 (1960), 83-110. Zbl0091.04401MR120213
  3. [3] H. Halberstam and K.F. Roth, Sequences, Springer-Verlag, New-YorkHeidelbergBerlin (1983). Zbl0498.10001MR687978
  4. [4] I.Z. Rusza, On a probabilistic method in additive number theory, Groupe de travail en théorie analytique et élémentaire des nombres, (1987-1988), Publications Mathématiques d'Orsay 89-01, Univ. Paris, Orsay (1989), 71-92. Zbl0672.10037MR993303
  5. [5] S. Sidon, Ein Satz über trigonometrische Polynorne und seine Anwendung in der Theorie des Fourier-Reihen, Math. Ann.106 (1932), 539-539. Zbl0004.21203JFM58.0268.06

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.