An elliptic surface of Mordell-Weil rank over the rational numbers
Journal de théorie des nombres de Bordeaux (1994)
- Volume: 6, Issue: 1, page 1-8
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topSchwartz, Charles F.. "An elliptic surface of Mordell-Weil rank $8$ over the rational numbers." Journal de théorie des nombres de Bordeaux 6.1 (1994): 1-8. <http://eudml.org/doc/247532>.
@article{Schwartz1994,
abstract = {Néron showed that an elliptic surface with rank $8$, and with base $B = P_1 \mathbb \{Q\}$, and geometric genus $=0$, may be obtained by blowing up $9$ points in the plane. In this paper, we obtain parameterizations of the coefficients of the Weierstrass equations of such elliptic surfaces, in terms of the $9$ points. Manin also describes bases of the Mordell-Weil groups of these elliptic surfaces, in terms of the $9$ points ; we observe that, relative to the Weierstrass form of the equation,\begin\{equation*\} Y^2 = X^3 + AX^2 + BX + C \end\{equation*\}(with $\deg (A) \le 2, \deg (B) \le 4$, and $\deg (C) \le 6)$ a basis $\left\lbrace (X_1,Y_1), \dots , (X_8, Y_8)\right\rbrace $ can be found with $X_i$ and $Y_i$ polynomial of degree $\le 2, \le 3$, respectively. One explicit example is computed, showing that for almost every elliptic surface given by a Weierstrass equation of the above form, a basis may be found with $X_i$ and $Y_i$ polynomial of degree $\le 2,\; \le 3$, respectively.},
author = {Schwartz, Charles F.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {elliptic surface with rank 8; parameterizations of the coefficients of the Weierstrass equations; Mordell-Weil groups},
language = {eng},
number = {1},
pages = {1-8},
publisher = {Université Bordeaux I},
title = {An elliptic surface of Mordell-Weil rank $8$ over the rational numbers},
url = {http://eudml.org/doc/247532},
volume = {6},
year = {1994},
}
TY - JOUR
AU - Schwartz, Charles F.
TI - An elliptic surface of Mordell-Weil rank $8$ over the rational numbers
JO - Journal de théorie des nombres de Bordeaux
PY - 1994
PB - Université Bordeaux I
VL - 6
IS - 1
SP - 1
EP - 8
AB - Néron showed that an elliptic surface with rank $8$, and with base $B = P_1 \mathbb {Q}$, and geometric genus $=0$, may be obtained by blowing up $9$ points in the plane. In this paper, we obtain parameterizations of the coefficients of the Weierstrass equations of such elliptic surfaces, in terms of the $9$ points. Manin also describes bases of the Mordell-Weil groups of these elliptic surfaces, in terms of the $9$ points ; we observe that, relative to the Weierstrass form of the equation,\begin{equation*} Y^2 = X^3 + AX^2 + BX + C \end{equation*}(with $\deg (A) \le 2, \deg (B) \le 4$, and $\deg (C) \le 6)$ a basis $\left\lbrace (X_1,Y_1), \dots , (X_8, Y_8)\right\rbrace $ can be found with $X_i$ and $Y_i$ polynomial of degree $\le 2, \le 3$, respectively. One explicit example is computed, showing that for almost every elliptic surface given by a Weierstrass equation of the above form, a basis may be found with $X_i$ and $Y_i$ polynomial of degree $\le 2,\; \le 3$, respectively.
LA - eng
KW - elliptic surface with rank 8; parameterizations of the coefficients of the Weierstrass equations; Mordell-Weil groups
UR - http://eudml.org/doc/247532
ER -
References
top- [1] D.A. Cox and S. Zucker, Intersection numbers of sections of elliptic surfaces, Invent. Math., 53 (1979), 1-44. Zbl0444.14004MR538682
- [2] W. Fulton, Algebraic Curves, an introduction to algebroic geometry, Benjamin, W. A. (1959), (Mathematics lecture note series). Zbl0181.23901
- [3] A. Kas, On the deformation types of regular elliptic surfaces, Preprint (1976). MR569686
- [4] Ju. I. Manin, The Tate height of points on an Abelian variety; its variants and applications, AMS Translations (series 2) 59 (1966), 82-110. Zbl0192.26801
- [5] L.J. Mordell, Diophantine Equations, Academic Press, London (1969). Zbl0188.34503MR249355
- [6] A. Néron, Les propriétés du rang des courbes algibriques dans les corps de degré de transcendance fini, Centre National de la Recherche Scientifique, (1950), 65-69. Zbl0040.16001MR41477
- [7) A. Néron, Propriétés arithmétiques de certaines familles de courbes algébriques, Proc. Int. Congress, Amsterdam, III (1954), 481-488. Zbl0074.15901MR87210
- [8] C.F. Schwartz, A Mordell-Weil group of rank 8, and a subgmup of finite index, Nagoya Math. J.93 (1984), 19-26. Zbl0504.14031MR738915
- [9] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan24 (1972), 20-59. Zbl0226.14013MR429918
- [10] T. Shioda, An infinite family of elliptic curves over Q with large rank via Néron's method, Invent. Math.106 (1991), 109-119. Zbl0766.14024MR1123376
- [11] K. Oguiso and T. Shioda, The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Pauli40 (1991), 83-99. Zbl0757.14011MR1104782
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.