On divisibility of the class number of real octic fields of a prime conductor by
Archivum Mathematicum (1994)
- Volume: 030, Issue: 4, page 263-270
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topJakubec, Stanislav. "On divisibility of the class number of real octic fields of a prime conductor $p=n^4+16$ by $p$." Archivum Mathematicum 030.4 (1994): 263-270. <http://eudml.org/doc/247554>.
@article{Jakubec1994,
abstract = {The aim of this paper is to prove the following Theorem Theorem Let $K$ be an octic subfield of the field $Q(\zeta _p+\zeta _p^\{-1\})$ and let $p=n^4+16$ be prime. Then $p$ divides $h_K$ if and only if $p$ divides $B_j$ for some $j=\frac\{p-1\}\{8\}$, $3\frac\{p-1\}\{8\}$, $5\frac\{p-1\}\{8\}$, $7\frac\{p-1\}\{8\}$.},
author = {Jakubec, Stanislav},
journal = {Archivum Mathematicum},
keywords = {cyclotomic field; Bernoulli numbers},
language = {eng},
number = {4},
pages = {263-270},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On divisibility of the class number of real octic fields of a prime conductor $p=n^4+16$ by $p$},
url = {http://eudml.org/doc/247554},
volume = {030},
year = {1994},
}
TY - JOUR
AU - Jakubec, Stanislav
TI - On divisibility of the class number of real octic fields of a prime conductor $p=n^4+16$ by $p$
JO - Archivum Mathematicum
PY - 1994
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 030
IS - 4
SP - 263
EP - 270
AB - The aim of this paper is to prove the following Theorem Theorem Let $K$ be an octic subfield of the field $Q(\zeta _p+\zeta _p^{-1})$ and let $p=n^4+16$ be prime. Then $p$ divides $h_K$ if and only if $p$ divides $B_j$ for some $j=\frac{p-1}{8}$, $3\frac{p-1}{8}$, $5\frac{p-1}{8}$, $7\frac{p-1}{8}$.
LA - eng
KW - cyclotomic field; Bernoulli numbers
UR - http://eudml.org/doc/247554
ER -
References
top- Irregular primes to one million, Math. Comp. 59 (1992), no. 200, 717-722. (1992) MR1134717
- Note on a polynomial of Emma Lehmer, Math. Comp. 56 (1991), no. 44, 795-800. (1991) Zbl0732.11056MR1068821
- Sur les corps cubiques cycliques dont l’anneau des entiers est monogene, Ann. Sci. Univ. Besancon Math.(3), no. 6, 1-26. Zbl0287.12010MR0352043
- Table numerique du nombre de classes et de unites des extensions cycliques reelles de degre 4 de , Publ. Math. Besancon, fasc. 2 (1977/1978), 1-26, 1-53. (1977/1978) MR0526779
- Familles d’unites dans les extensions cycliques reelles de degre 6 de , Publ. Math. Besancon (1984/1985-1985/1986). (1984/1985-1985/1986) MR0898667
- Special units in real cyclic sextic fields, Math.Comp. 48 (1987), 341-355. (1987) Zbl0617.12006MR0866107
- The congruence for Gauss’s period, Journal of Number Theory 48 (1994), 36-45. (1994) MR1284872
- On the Vandiver’s conjecture, Abh. Math. Sem. Univ. Hamburg 64 (1994), 105-124. (1994) MR1292720
- Gaussian periods and units in certain cyclic fields, Proceedings of AMS 115, 961 - 968. Zbl0760.11032MR1093600
- Unites d’une famille de corps cycliques reeles de degre 6 lies a la coube modulaire , J. Number Theory 31 (1989), 54-63. (1989) MR0978099
- Connection between Gaussian periods and cyclic units, Math. Comp. 50 (1988), 535-541. (1988) Zbl0652.12004MR0929551
- A class number congruence for cyclotomic fields and their subfields, Acta Arith. 23 (1973), 107-116. (1973) MR0332720
- Nombre de classes d’une extension cyclique reelle de , de degre 4 ou 6 et de conducteur premier, Math. Nachr. 102 (1981), 45-52. (1981) MR0642140
- Majoration du nombre de classes d’un corps cubique cyclique de conducteur premier, J.Math. Soc. Japan 33 (1981), 701-706. (1981) MR0630633
- Quintic polynomials and real cyclotomic fields with large class numbers, Math. Comp. 50 (1988), 543-556. (1988) MR0929552
- The simplest cubic fields, Math. Comp. 28 (1974), 1137-1152. (1974) Zbl0307.12005MR0352049
- Unit groups and class numbers of real cyclic fields, TAMS 326 (1991), 179-209. (1991) MR1031243
- Introduction to Cyclotomic Fields, Springer-Verlag 83. Zbl0966.11047MR1421575
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.