On divisibility of the class number of real octic fields of a prime conductor p = n 4 + 16 by p

Stanislav Jakubec

Archivum Mathematicum (1994)

  • Volume: 030, Issue: 4, page 263-270
  • ISSN: 0044-8753

Abstract

top
The aim of this paper is to prove the following Theorem Theorem Let K be an octic subfield of the field Q ( ζ p + ζ p - 1 ) and let p = n 4 + 16 be prime. Then p divides h K if and only if p divides B j for some j = p - 1 8 , 3 p - 1 8 , 5 p - 1 8 , 7 p - 1 8 .

How to cite

top

Jakubec, Stanislav. "On divisibility of the class number of real octic fields of a prime conductor $p=n^4+16$ by $p$." Archivum Mathematicum 030.4 (1994): 263-270. <http://eudml.org/doc/247554>.

@article{Jakubec1994,
abstract = {The aim of this paper is to prove the following Theorem Theorem Let $K$ be an octic subfield of the field $Q(\zeta _p+\zeta _p^\{-1\})$ and let $p=n^4+16$ be prime. Then $p$ divides $h_K$ if and only if $p$ divides $B_j$ for some $j=\frac\{p-1\}\{8\}$, $3\frac\{p-1\}\{8\}$, $5\frac\{p-1\}\{8\}$, $7\frac\{p-1\}\{8\}$.},
author = {Jakubec, Stanislav},
journal = {Archivum Mathematicum},
keywords = {cyclotomic field; Bernoulli numbers},
language = {eng},
number = {4},
pages = {263-270},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On divisibility of the class number of real octic fields of a prime conductor $p=n^4+16$ by $p$},
url = {http://eudml.org/doc/247554},
volume = {030},
year = {1994},
}

TY - JOUR
AU - Jakubec, Stanislav
TI - On divisibility of the class number of real octic fields of a prime conductor $p=n^4+16$ by $p$
JO - Archivum Mathematicum
PY - 1994
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 030
IS - 4
SP - 263
EP - 270
AB - The aim of this paper is to prove the following Theorem Theorem Let $K$ be an octic subfield of the field $Q(\zeta _p+\zeta _p^{-1})$ and let $p=n^4+16$ be prime. Then $p$ divides $h_K$ if and only if $p$ divides $B_j$ for some $j=\frac{p-1}{8}$, $3\frac{p-1}{8}$, $5\frac{p-1}{8}$, $7\frac{p-1}{8}$.
LA - eng
KW - cyclotomic field; Bernoulli numbers
UR - http://eudml.org/doc/247554
ER -

References

top
  1. Irregular primes to one million, Math. Comp. 59 (1992), no. 200, 717-722. (1992) MR1134717
  2. Note on a polynomial of Emma Lehmer, Math. Comp. 56 (1991), no. 44, 795-800. (1991) Zbl0732.11056MR1068821
  3. Sur les corps cubiques cycliques dont l’anneau des entiers est monogene, Ann. Sci. Univ. Besancon Math.(3), no. 6, 1-26. Zbl0287.12010MR0352043
  4. Table numerique du nombre de classes et de unites des extensions cycliques reelles de degre 4 de Q , Publ. Math. Besancon, fasc. 2 (1977/1978), 1-26, 1-53. (1977/1978) MR0526779
  5. Familles d’unites dans les extensions cycliques reelles de degre 6 de Q , Publ. Math. Besancon (1984/1985-1985/1986). (1984/1985-1985/1986) MR0898667
  6. Special units in real cyclic sextic fields, Math.Comp. 48 (1987), 341-355. (1987) Zbl0617.12006MR0866107
  7. The congruence for Gauss’s period, Journal of Number Theory 48 (1994), 36-45. (1994) MR1284872
  8. On the Vandiver’s conjecture, Abh. Math. Sem. Univ. Hamburg 64 (1994), 105-124. (1994) MR1292720
  9. Gaussian periods and units in certain cyclic fields, Proceedings of AMS 115, 961 - 968. Zbl0760.11032MR1093600
  10. Unites d’une famille de corps cycliques reeles de degre 6 lies a la coube modulaire X 1 ( 13 ) , J. Number Theory 31 (1989), 54-63. (1989) MR0978099
  11. Connection between Gaussian periods and cyclic units, Math. Comp. 50 (1988), 535-541. (1988) Zbl0652.12004MR0929551
  12. A class number congruence for cyclotomic fields and their subfields, Acta Arith. 23 (1973), 107-116. (1973) MR0332720
  13. Nombre de classes d’une extension cyclique reelle de , de degre 4 ou 6 et de conducteur premier, Math. Nachr. 102 (1981), 45-52. (1981) MR0642140
  14. Majoration du nombre de classes d’un corps cubique cyclique de conducteur premier, J.Math. Soc. Japan 33 (1981), 701-706. (1981) MR0630633
  15. Quintic polynomials and real cyclotomic fields with large class numbers, Math. Comp. 50 (1988), 543-556. (1988) MR0929552
  16. The simplest cubic fields, Math. Comp. 28 (1974), 1137-1152. (1974) Zbl0307.12005MR0352049
  17. Unit groups and class numbers of real cyclic fields, TAMS 326 (1991), 179-209. (1991) MR1031243
  18. Introduction to Cyclotomic Fields, Springer-Verlag 83. Zbl0966.11047MR1421575

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.