Natural liftings of ( 0 , 2 ) -tensor fields to the tangent bundle

Miroslav Doupovec

Archivum Mathematicum (1994)

  • Volume: 030, Issue: 3, page 215-225
  • ISSN: 0044-8753

Abstract

top
We determine all first order natural operators transforming ( 0 , 2 ) –tensor fields on a manifold M into ( 0 , 2 ) –tensor fields on T M .

How to cite

top

Doupovec, Miroslav. "Natural liftings of $(0,2)$-tensor fields to the tangent bundle." Archivum Mathematicum 030.3 (1994): 215-225. <http://eudml.org/doc/247558>.

@article{Doupovec1994,
abstract = {We determine all first order natural operators transforming $(0,2)$–tensor fields on a manifold $M$ into $(0,2)$–tensor fields on $TM$.},
author = {Doupovec, Miroslav},
journal = {Archivum Mathematicum},
keywords = {natural operator; tensor field; complete lift; vertical lift; tangent bundle; natural operators; tensor fields; complete lift; vertical lift},
language = {eng},
number = {3},
pages = {215-225},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Natural liftings of $(0,2)$-tensor fields to the tangent bundle},
url = {http://eudml.org/doc/247558},
volume = {030},
year = {1994},
}

TY - JOUR
AU - Doupovec, Miroslav
TI - Natural liftings of $(0,2)$-tensor fields to the tangent bundle
JO - Archivum Mathematicum
PY - 1994
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 030
IS - 3
SP - 215
EP - 225
AB - We determine all first order natural operators transforming $(0,2)$–tensor fields on a manifold $M$ into $(0,2)$–tensor fields on $TM$.
LA - eng
KW - natural operator; tensor field; complete lift; vertical lift; tangent bundle; natural operators; tensor fields; complete lift; vertical lift
UR - http://eudml.org/doc/247558
ER -

References

top
  1. The canonical isomorphism between T k T * M and T * T k M , CRAS Paris 309 (1989), 1509–1514. (1989) MR1033091
  2. Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies 158, Amsterdam, 1989. (1989) MR1021489
  3. Natural 2 –forms on the tangent bundle of a Riemannian manifold, to appear in Proc. of Winter School in Srní, Suppl. Rend. Circ. Matem. Palermo. 
  4. Natural transformations of the second tangent functor into itself, Arch. Math. (Brno) XX (1984), 169–172. (1984) MR0784868
  5. Natural transformations of second tangent and cotangent functors, Czech. Math. J. 38(113) (1988), 274–279. (1988) MR0946296
  6. Natural Operations in Differential Geometry, Springer-Verlag, 1993. (1993) MR1202431
  7. Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles – a classification, Differential Geometry and Its Applications, Proceedings, D. Reidel Publishing Company (1987), 149–178. (1987) MR0923348
  8. Some results on second tangent and cotangent spaces, Quaderni dell’ Instituto di Matematica dell’ Università di Lecce Q. 16 (1978). (1978) 
  9. Liftings of tensor fields and connections to tangent bundle of higher order, Nagoya Math. J. 40 (1970), 99–120. (1970) MR0279719
  10. Liftings of some types of tensor fields and connections to tangent bundles of p r –velocities, Nagoya Math. J. 40 (1970), 13–31. (1970) MR0279720
  11. Hamiltonian systems, Lagrangian systems and the Legendre transformation, Symp. Math. 14, 247–258, Roma 1974. 
  12. Tangent and cotangent bundles, Marcel Dekker Inc., New York, 1973. (1973) MR0350650

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.