Sequential convergence in
Commentationes Mathematicae Universitatis Carolinae (1994)
- Volume: 35, Issue: 2, page 371-382
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topFremlin, David H.. "Sequential convergence in $C_p(X)$." Commentationes Mathematicae Universitatis Carolinae 35.2 (1994): 371-382. <http://eudml.org/doc/247575>.
@article{Fremlin1994,
abstract = {I discuss the number of iterations of the elementary sequential closure operation required to achieve the full sequential closure of a set in spaces of the form $C_p(X)$.},
author = {Fremlin, David H.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {sequential convergence; $C_p(X)$; sequential convergence; sequential closure of sets; normed spaces},
language = {eng},
number = {2},
pages = {371-382},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Sequential convergence in $C_p(X)$},
url = {http://eudml.org/doc/247575},
volume = {35},
year = {1994},
}
TY - JOUR
AU - Fremlin, David H.
TI - Sequential convergence in $C_p(X)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 2
SP - 371
EP - 382
AB - I discuss the number of iterations of the elementary sequential closure operation required to achieve the full sequential closure of a set in spaces of the form $C_p(X)$.
LA - eng
KW - sequential convergence; $C_p(X)$; sequential convergence; sequential closure of sets; normed spaces
UR - http://eudml.org/doc/247575
ER -
References
top- Bourgain J., New classes of spaces, Springer, 1981 (Lecture Notes in Mathematics 889). MR0639014
- Day M.M., Normed Spaces, Springer, 1962. Zbl0316.46010
- van Douwen E.K., The integers and topology, pp. 111-167 in 11. Zbl0561.54004MR0776622
- Dugundji J., An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367. (1951) Zbl0043.38105MR0044116
- Engelking R., General Topology, Heldermann, 1989. Zbl0684.54001MR1039321
- Fremlin D.H., Supplement to “Convergent sequences in ”, University of Essex Mathematics Department Research Report 92-14.
- Gerlits J., Nagy Z., Some properties of , Topology Appl. 14 (1982), 151-161. (1982) Zbl0503.54020MR0667661
- Jameson G.J.O., Topology and Normed Spaces, Chapman & Hall, 1974. Zbl0285.46002MR0463890
- Kechris A.S., Louveau A., Descriptive Set Theory and Sets of Uniqueness, Cambridge U.P., 1987. MR0953784
- Köthe G., Topologische Lineare Räume, Springer, 1960. MR0130551
- Kunen K., Vaughan J.E., Handbook of Set-Theoretic Topology, North-Holland, 1984. Zbl0674.54001MR0776619
- Kuratowski K., Topology, vol I., Academic, 1966. Zbl0849.01044MR0217751
- Miller A.W., On the length of Borel hierarchies, Ann. Math. Logic 16 (1979), 233-267. (1979) Zbl0415.03038MR0548475
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.