A metrizable completely regular ordered space
Hans-Peter A. Künzi; Stephen W. Watson
Commentationes Mathematicae Universitatis Carolinae (1994)
- Volume: 35, Issue: 4, page 773-778
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKünzi, Hans-Peter A., and Watson, Stephen W.. "A metrizable completely regular ordered space." Commentationes Mathematicae Universitatis Carolinae 35.4 (1994): 773-778. <http://eudml.org/doc/247579>.
@article{Künzi1994,
abstract = {We construct a completely regular ordered space $(X,\{\mathcal \{T\}\},\le )$ such that $X$ is an $I$-space, the topology $\mathcal \{T\}$ of $X$ is metrizable and the bitopological space $(X,\{\mathcal \{T\}\}^\sharp ,\{\mathcal \{T\}\}^\{\flat \})$ is pairwise regular, but not pairwise completely regular. (Here $\{\mathcal \{T\}\}^\sharp $ denotes the upper topology and $\{\mathcal \{T\}\}^\flat $ the lower topology of $X$.)},
author = {Künzi, Hans-Peter A., Watson, Stephen W.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {completely regular ordered; strictly completely regular ordered; pairwise completely regular; pairwise regular; $I$-space},
language = {eng},
number = {4},
pages = {773-778},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A metrizable completely regular ordered space},
url = {http://eudml.org/doc/247579},
volume = {35},
year = {1994},
}
TY - JOUR
AU - Künzi, Hans-Peter A.
AU - Watson, Stephen W.
TI - A metrizable completely regular ordered space
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 4
SP - 773
EP - 778
AB - We construct a completely regular ordered space $(X,{\mathcal {T}},\le )$ such that $X$ is an $I$-space, the topology $\mathcal {T}$ of $X$ is metrizable and the bitopological space $(X,{\mathcal {T}}^\sharp ,{\mathcal {T}}^{\flat })$ is pairwise regular, but not pairwise completely regular. (Here ${\mathcal {T}}^\sharp $ denotes the upper topology and ${\mathcal {T}}^\flat $ the lower topology of $X$.)
LA - eng
KW - completely regular ordered; strictly completely regular ordered; pairwise completely regular; pairwise regular; $I$-space
UR - http://eudml.org/doc/247579
ER -
References
top- Kelly J.C., Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71-89. (1963) Zbl0107.16401MR0143169
- Künzi H.P.A., Completely regular ordered spaces, Order 7 (1990), 283-293. (1990) MR1113204
- Künzi H.P.A., Quasi-uniform spaces - eleven years later, Top. Proc. 18 (1993), to appear. MR1305128
- Lane E.P., Bitopological spaces and quasi-uniform spaces, Proc. London Math. Soc. 17 (1967), 241-256. (1967) Zbl0152.21101MR0205221
- Lawson J.D., Order and strongly sober compactifications, in: Topology and Category Theory in Computer Science, ed. G.M. Reed, A.W. Roscoe and R.F. Wachter, Clarendon Press, Oxford, 1991, pp. 179-205. Zbl0745.54012MR1145775
- Nachbin L., Topology and Order, D. van Nostrand, Princeton, 1965. Zbl0333.54002MR0219042
- Priestley H.A., Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 24 (1972), 507-530. (1972) Zbl0323.06011MR0300949
- Schwarz F., Weck-Schwarz S., Is every partially ordered space with a completely regular topology already a completely regular partially ordered space?, Math. Nachr. 161 (1993), 199-201. (1993) MR1251017
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.