Rectangular covers of products missing diagonals

Yukinobu Yajima

Commentationes Mathematicae Universitatis Carolinae (1994)

  • Volume: 35, Issue: 1, page 147-153
  • ISSN: 0010-2628

Abstract

top
We give a characterization of a paracompact Σ -space to have a G δ -diagonal in terms of three rectangular covers of X 2 Δ . Moreover, we show that a local property and a global property of a space X are given by the orthocompactness of ( X × β X ) Δ .

How to cite

top

Yajima, Yukinobu. "Rectangular covers of products missing diagonals." Commentationes Mathematicae Universitatis Carolinae 35.1 (1994): 147-153. <http://eudml.org/doc/247606>.

@article{Yajima1994,
abstract = {We give a characterization of a paracompact $\Sigma $-space to have a $G_\delta $-diagonal in terms of three rectangular covers of $X^2\setminus \Delta $. Moreover, we show that a local property and a global property of a space $X$ are given by the orthocompactness of $(X\times \beta X)\setminus \Delta $.},
author = {Yajima, Yukinobu},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\Sigma $-space; $G_\delta $-diagonal; $\sigma $-closure-preserving; $\sigma $-cushioned; rectangular cover; orthocompact; metacompact; Fréchet space; rectangular cover; paracompact -space; orthocompact space; metacompact space; Fréchet space; -diagonal; diagonal},
language = {eng},
number = {1},
pages = {147-153},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Rectangular covers of products missing diagonals},
url = {http://eudml.org/doc/247606},
volume = {35},
year = {1994},
}

TY - JOUR
AU - Yajima, Yukinobu
TI - Rectangular covers of products missing diagonals
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 1
SP - 147
EP - 153
AB - We give a characterization of a paracompact $\Sigma $-space to have a $G_\delta $-diagonal in terms of three rectangular covers of $X^2\setminus \Delta $. Moreover, we show that a local property and a global property of a space $X$ are given by the orthocompactness of $(X\times \beta X)\setminus \Delta $.
LA - eng
KW - $\Sigma $-space; $G_\delta $-diagonal; $\sigma $-closure-preserving; $\sigma $-cushioned; rectangular cover; orthocompact; metacompact; Fréchet space; rectangular cover; paracompact -space; orthocompact space; metacompact space; Fréchet space; -diagonal; diagonal
UR - http://eudml.org/doc/247606
ER -

References

top
  1. Arhangel'skiĭ A.V., Kombarov A.P., On -normal spaces, Topology and Appl. 35 (1990), 121-126. (1990) MR1058792
  2. Chaber J., Čoban M., Nagami N., On monotonic generalizations of Moore spaces, Čech-complete spaces, and p -spaces, Fund. Math. 83 (1974), 107-119. (1974) MR0343244
  3. Gruenhage G., Generalized metric spaces, Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 423-501. Zbl0794.54034MR0776629
  4. Gruenhage G., Pelant J., Analytic spaces and paracompactness of X 2 Δ , Topology and Appl. 28 (1988), 11-15. (1988) Zbl0636.54025MR0927277
  5. Junnila H.J.K., Metacompactness, paracompactness and interior-preserving open covers, Trans. Amer. Math. Soc. 249 (1979), 373-385. (1979) Zbl0404.54017MR0525679
  6. Junnila H.J.K., On submetacompactness, Topology Proc. 3 (1978), 375-405. (1978) MR0540503
  7. Kombarov A.P., On rectangular covers of X 2 Δ , Comment. Math. Univ. Carolinae 30 (1989), 81-83. (1989) MR0995704
  8. Nagami K., Σ -spaces, Fund. Math. 65 (1969), 169-192. (1969) Zbl0181.50701MR0257963
  9. Yajima Y., A characterization of submetacompactness in terms of products, Proc. Amer. Math. Soc. 112 (1991), 291-296. (1991) Zbl0722.54017MR1054165
  10. Yajima Y., Subspaces of squares; X 2 Δ and others, Abstracts of Short Conference of Uniform Mathematics and its Applications, Bern, 1991. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.