Boundary value problems for higher order ordinary differential equations

Armando Majorana; Salvatore A. Marano

Commentationes Mathematicae Universitatis Carolinae (1994)

  • Volume: 35, Issue: 3, page 451-466
  • ISSN: 0010-2628

Abstract

top
Let f : [ a , b ] × n + 1 be a Carath’eodory’s function. Let { t h } , with t h [ a , b ] , and { x h } be two real sequences. In this paper, the family of boundary value problems x ( k ) = f t , x , x ' , ... , x ( n ) x ( i ) ( t i ) = x i , i = 0 , 1 , ... , k - 1 ( k = n + 1 , n + 2 , n + 3 , ... ) is considered. It is proved that these boundary value problems admit at least a solution for each k ν , where ν n + 1 is a suitable integer. Some particular cases, obtained by specializing the sequence { t h } , are pointed out. Similar results are also proved for the Picard problem.

How to cite

top

Majorana, Armando, and Marano, Salvatore A.. "Boundary value problems for higher order ordinary differential equations." Commentationes Mathematicae Universitatis Carolinae 35.3 (1994): 451-466. <http://eudml.org/doc/247613>.

@article{Majorana1994,
abstract = {Let $f : [a,b] \times \mathbb \{R\}^\{n+1\} \rightarrow \mathbb \{R\}$ be a Carath’eodory’s function. Let $ \lbrace t_\{h\}\rbrace $, with $t_\{h\} \in [a,b]$, and $\lbrace x_\{h\}\rbrace $ be two real sequences. In this paper, the family of boundary value problems \[ \left\lbrace \begin\{array\}\{ll\}x^\{(k)\} = f \left( t,x,x^\{\prime \},\ldots ,x^\{(n)\} \right) \ x^\{(i)\}(t\_\{i\}) = x\_\{i\} \,, \quad i=0,1, \ldots , k-1 \end\{array\}\right.\qquad (k=n+1,n+2,n+3,\ldots ) \] is considered. It is proved that these boundary value problems admit at least a solution for each $k \ge \nu $, where $\nu \ge n+1$ is a suitable integer. Some particular cases, obtained by specializing the sequence $\lbrace t_\{h\}\rbrace $, are pointed out. Similar results are also proved for the Picard problem.},
author = {Majorana, Armando, Marano, Salvatore A.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {higher order ordinary differential equations; Nicoletti problem; Picard problem; Schauder fixed point theorem; Abel-Gontcharoff and Lagrange polynomials; existence},
language = {eng},
number = {3},
pages = {451-466},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Boundary value problems for higher order ordinary differential equations},
url = {http://eudml.org/doc/247613},
volume = {35},
year = {1994},
}

TY - JOUR
AU - Majorana, Armando
AU - Marano, Salvatore A.
TI - Boundary value problems for higher order ordinary differential equations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 3
SP - 451
EP - 466
AB - Let $f : [a,b] \times \mathbb {R}^{n+1} \rightarrow \mathbb {R}$ be a Carath’eodory’s function. Let $ \lbrace t_{h}\rbrace $, with $t_{h} \in [a,b]$, and $\lbrace x_{h}\rbrace $ be two real sequences. In this paper, the family of boundary value problems \[ \left\lbrace \begin{array}{ll}x^{(k)} = f \left( t,x,x^{\prime },\ldots ,x^{(n)} \right) \ x^{(i)}(t_{i}) = x_{i} \,, \quad i=0,1, \ldots , k-1 \end{array}\right.\qquad (k=n+1,n+2,n+3,\ldots ) \] is considered. It is proved that these boundary value problems admit at least a solution for each $k \ge \nu $, where $\nu \ge n+1$ is a suitable integer. Some particular cases, obtained by specializing the sequence $\lbrace t_{h}\rbrace $, are pointed out. Similar results are also proved for the Picard problem.
LA - eng
KW - higher order ordinary differential equations; Nicoletti problem; Picard problem; Schauder fixed point theorem; Abel-Gontcharoff and Lagrange polynomials; existence
UR - http://eudml.org/doc/247613
ER -

References

top
  1. Abramowitz M., Stegun I.A., Handbook of Mathematical functions with Formulas, Graphs, and Mathematical Tables, Dover Publ., New York, 1972. MR0208797
  2. Agarwal R.P., Boundary Value Problems for Higher Order Differential Equations, World Sci. Publ., Singapore, 1986. Zbl0921.34021MR1021979
  3. Bernfeld S.R., Lakshmikantham V., An Introduction to Nonlinear Boundary Value Problems, Academic Press, New York, 1974. MR0445048
  4. Bernstein S.N., Sur les fonctions régulierèment monotones, Atti Congresso Int. Mat. Bologna 1928, vol. 2 (1930), 267-275. 
  5. Bernstein S.N., On some properties of cyclically monotonic functions, Izvestiya Akad. Nauk SSSR, Ser. Mat. 14 (1950), 381-404. (1950) MR0037885
  6. Bonanno G., Marano S.A., Higher order ordinary differential equations, Differential Integral Equations 6 (1993), 1119-1123. (1993) MR1230485
  7. Miranda C., Istituzioni di Analisi Funzionale Lineare - I, Unione Matematica Italiana, 1978. 
  8. Piccinini L.C., Stampacchia G., Vidossich G., Ordinary Differential Equations in n (Problems and Methods), Springer-Verlag, New York, 1984. Zbl1220.68090MR0740539
  9. Schoenberg I.J., On the zeros of successive derivatives of integral functions, Trans. Amer. Math. Soc. 40 (1936), 12-23. (1936) MR1501863
  10. Whittaker J.M., Interpolatory Function Theory, Stechert-Hafner Service Agency, New York, 1964. MR0185330
  11. Zwirner G., Su un problema di valori al contorno per equazioni differenziali ordinarie di ordine n , Rend. Sem. Mat. Univ. Padova 12 (1941), 114-122. (1941) MR0017834

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.