Boundary value problems for higher order ordinary differential equations
Armando Majorana; Salvatore A. Marano
Commentationes Mathematicae Universitatis Carolinae (1994)
- Volume: 35, Issue: 3, page 451-466
 - ISSN: 0010-2628
 
Access Full Article
topAbstract
topHow to cite
topMajorana, Armando, and Marano, Salvatore A.. "Boundary value problems for higher order ordinary differential equations." Commentationes Mathematicae Universitatis Carolinae 35.3 (1994): 451-466. <http://eudml.org/doc/247613>.
@article{Majorana1994,
	abstract = {Let $f : [a,b] \times \mathbb \{R\}^\{n+1\} \rightarrow \mathbb \{R\}$ be a Carath’eodory’s function. Let $ \lbrace t_\{h\}\rbrace  $, with $t_\{h\} \in [a,b]$, and $\lbrace x_\{h\}\rbrace $ be two real sequences. In this paper, the family of boundary value problems \[ \left\lbrace \begin\{array\}\{ll\}x^\{(k)\} = f \left( t,x,x^\{\prime \},\ldots ,x^\{(n)\} \right) \ x^\{(i)\}(t\_\{i\}) = x\_\{i\} \,, \quad i=0,1, \ldots , k-1 \end\{array\}\right.\qquad (k=n+1,n+2,n+3,\ldots ) \]
is considered. It is proved that these boundary value problems admit at least a solution for each $k \ge \nu $, where $\nu \ge n+1$ is a suitable integer. Some particular cases, obtained by specializing the sequence $\lbrace t_\{h\}\rbrace $, are pointed out. Similar results are also proved for the Picard problem.},
	author = {Majorana, Armando, Marano, Salvatore A.},
	journal = {Commentationes Mathematicae Universitatis Carolinae},
	keywords = {higher order ordinary differential equations; Nicoletti problem; Picard problem; Schauder fixed point theorem; Abel-Gontcharoff and Lagrange polynomials; existence},
	language = {eng},
	number = {3},
	pages = {451-466},
	publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
	title = {Boundary value problems for higher order ordinary differential equations},
	url = {http://eudml.org/doc/247613},
	volume = {35},
	year = {1994},
}
TY  - JOUR
AU  - Majorana, Armando
AU  - Marano, Salvatore A.
TI  - Boundary value problems for higher order ordinary differential equations
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1994
PB  - Charles University in Prague, Faculty of Mathematics and Physics
VL  - 35
IS  - 3
SP  - 451
EP  - 466
AB  - Let $f : [a,b] \times \mathbb {R}^{n+1} \rightarrow \mathbb {R}$ be a Carath’eodory’s function. Let $ \lbrace t_{h}\rbrace  $, with $t_{h} \in [a,b]$, and $\lbrace x_{h}\rbrace $ be two real sequences. In this paper, the family of boundary value problems \[ \left\lbrace \begin{array}{ll}x^{(k)} = f \left( t,x,x^{\prime },\ldots ,x^{(n)} \right) \ x^{(i)}(t_{i}) = x_{i} \,, \quad i=0,1, \ldots , k-1 \end{array}\right.\qquad (k=n+1,n+2,n+3,\ldots ) \]
is considered. It is proved that these boundary value problems admit at least a solution for each $k \ge \nu $, where $\nu \ge n+1$ is a suitable integer. Some particular cases, obtained by specializing the sequence $\lbrace t_{h}\rbrace $, are pointed out. Similar results are also proved for the Picard problem.
LA  - eng
KW  - higher order ordinary differential equations; Nicoletti problem; Picard problem; Schauder fixed point theorem; Abel-Gontcharoff and Lagrange polynomials; existence
UR  - http://eudml.org/doc/247613
ER  - 
References
top- Abramowitz M., Stegun I.A., Handbook of Mathematical functions with Formulas, Graphs, and Mathematical Tables, Dover Publ., New York, 1972. MR0208797
 - Agarwal R.P., Boundary Value Problems for Higher Order Differential Equations, World Sci. Publ., Singapore, 1986. Zbl0921.34021MR1021979
 - Bernfeld S.R., Lakshmikantham V., An Introduction to Nonlinear Boundary Value Problems, Academic Press, New York, 1974. MR0445048
 - Bernstein S.N., Sur les fonctions régulierèment monotones, Atti Congresso Int. Mat. Bologna 1928, vol. 2 (1930), 267-275.
 - Bernstein S.N., On some properties of cyclically monotonic functions, Izvestiya Akad. Nauk SSSR, Ser. Mat. 14 (1950), 381-404. (1950) MR0037885
 - Bonanno G., Marano S.A., Higher order ordinary differential equations, Differential Integral Equations 6 (1993), 1119-1123. (1993) MR1230485
 - Miranda C., Istituzioni di Analisi Funzionale Lineare - I, Unione Matematica Italiana, 1978.
 - Piccinini L.C., Stampacchia G., Vidossich G., Ordinary Differential Equations in (Problems and Methods), Springer-Verlag, New York, 1984. Zbl1220.68090MR0740539
 - Schoenberg I.J., On the zeros of successive derivatives of integral functions, Trans. Amer. Math. Soc. 40 (1936), 12-23. (1936) MR1501863
 - Whittaker J.M., Interpolatory Function Theory, Stechert-Hafner Service Agency, New York, 1964. MR0185330
 - Zwirner G., Su un problema di valori al contorno per equazioni differenziali ordinarie di ordine , Rend. Sem. Mat. Univ. Padova 12 (1941), 114-122. (1941) MR0017834
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.