Free -groups and free products of -groups

Dao Rong Tong

Commentationes Mathematicae Universitatis Carolinae (1994)

  • Volume: 35, Issue: 4, page 617-625
  • ISSN: 0010-2628

Abstract

top
In this paper we have given the construction of free -groups generated by a po-group and the construction of free products in any sub-product class 𝒰 of i -groups. We have proved that the 𝒰 -free products satisfy the weak subalgebra property.

How to cite

top

Tong, Dao Rong. "Free $\ell $-groups and free products of $\ell $-groups." Commentationes Mathematicae Universitatis Carolinae 35.4 (1994): 617-625. <http://eudml.org/doc/247617>.

@article{Tong1994,
abstract = {In this paper we have given the construction of free $\ell $-groups generated by a po-group and the construction of free products in any sub-product class $\mathcal \{U\}$ of $i\ell $-groups. We have proved that the $\mathcal \{U\}$-free products satisfy the weak subalgebra property.},
author = {Tong, Dao Rong},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {lattice-ordered group ($\ell $-group); free $\ell $-group; free product of $\ell $-groups; sub-product class of $\ell $-groups; free l-groups; po-group; free products; weak subalgebra property},
language = {eng},
number = {4},
pages = {617-625},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Free $\ell $-groups and free products of $\ell $-groups},
url = {http://eudml.org/doc/247617},
volume = {35},
year = {1994},
}

TY - JOUR
AU - Tong, Dao Rong
TI - Free $\ell $-groups and free products of $\ell $-groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 4
SP - 617
EP - 625
AB - In this paper we have given the construction of free $\ell $-groups generated by a po-group and the construction of free products in any sub-product class $\mathcal {U}$ of $i\ell $-groups. We have proved that the $\mathcal {U}$-free products satisfy the weak subalgebra property.
LA - eng
KW - lattice-ordered group ($\ell $-group); free $\ell $-group; free product of $\ell $-groups; sub-product class of $\ell $-groups; free l-groups; po-group; free products; weak subalgebra property
UR - http://eudml.org/doc/247617
ER -

References

top
  1. Anderson M., Feil T., Lattice-Ordered Groups (An Introduction), D. Reidel Publishing Company, 1988. Zbl0636.06008MR0937703
  2. Conrad P., Lattice-Ordered Groups, Tulane Lecture Notes, Tulane University, 1970. Zbl1058.06019
  3. Conrad P., Free lattice-ordered groups, J. of Algebra 16 (1970), 191-203. (1970) Zbl0213.31502MR0270992
  4. Holland W.C., Scringer E., Free products of lattice-ordered groups, Algebra Universalis 2 (1972), 247-254. (1972) MR0319843
  5. Glass A.M.W., Holland W.C., Lattice-Ordered Groups (Advances and Techniques), Kluwer Academic Publishers, 1989. Zbl0705.06001MR1036072
  6. Grätzer G., Universal Algebra, 2nd ed., Springer-Verlag, New York, 1979. MR0538623
  7. Martinez J., Free products in varieties of lattice-ordered groups, Czech. Math. J. 22 (1972), 535-553. (1972) Zbl0247.06022MR0311536
  8. Martinez J., Free products of abelian -groups, Czech. Math. J. 23 (1973), 349-361. (1973) MR0371770
  9. Martinez J. (ed.), Ordered Algebraic Structure, Kluwer Academic Publishers, 1989, pp. 11-49. MR1094821
  10. Powell W.B., Tsinakis C., Free products of abelian -groups are cardinally indecomposable, Proc. A.M.S. 86 (1982), 385-390. (1982) MR0671199
  11. Powell W.B., Tsinakis C., Free products in the class of abelian -groups, Pacific J. Math. 104 (1983), 429-442. (1983) MR0684301
  12. Powell W.B., Tsinakis C., The distributive lattice free products as a sublattice of the abelian -group free product, J. Austral. Math. Soc. 34 (1993), 92-100. (1993) MR0683181
  13. Powell W.B., Tsinakis C., Free products of lattice-ordered groups, Algebra Universalis 18 (1984), 178-198. (1984) Zbl0545.06007MR0743466
  14. Powell W.B., Tsinakis C., Disjointness conditions for free products of -groups, Arkiv. der Math. 46 (1986), 491-498. (1986) Zbl0578.06012MR0849853
  15. Powell W.B., Tsinakis C., Disjoint sets in free products of representable -groups, Proc. A.M.S. 104 (1988), 1014-1020. (1988) MR0931736
  16. Dao-Rong Ton, Free weak Hamiltonian -groups, Northeast Mathematics 10 (2) (1994), 235-240. (1994) 
  17. Weinberg E.C., Free lattice-ordered abelian groups, Math. Ann. 151 (1963), 187-199. (1963) Zbl0114.25801MR0153759
  18. Weinberg E.C., Free lattice-ordered abelian groups II, Math. Ann. 159 (1965), 217-222. (1965) Zbl0138.26201MR0181668

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.