On the approximation of entire functions over Carathéodory domains

Devendra Kumar; Harvir S. Kasana

Commentationes Mathematicae Universitatis Carolinae (1994)

  • Volume: 35, Issue: 4, page 681-689
  • ISSN: 0010-2628

Abstract

top
Let D be a Carathéodory domain. For 1 p , let L p ( D ) be the class of all functions f holomorphic in D such that f D , p = [ 1 A D | f ( z ) | p d x d y ] 1 / p < , where A is the area of D . For f L p ( D ) , set E n p ( f ) = inf t π n f - t D , p ; π n consists of all polynomials of degree at most n . In this paper we study the growth of an entire function in terms of approximation error in L p -norm on D .

How to cite

top

Kumar, Devendra, and Kasana, Harvir S.. "On the approximation of entire functions over Carathéodory domains." Commentationes Mathematicae Universitatis Carolinae 35.4 (1994): 681-689. <http://eudml.org/doc/247619>.

@article{Kumar1994,
abstract = {Let $D$ be a Carathéodory domain. For $1\le p\le \infty $, let $L^p(D)$ be the class of all functions $f$ holomorphic in $D$ such that $\Vert f\Vert _\{D,p\}=[\frac\{1\}\{A\}\int \int _\{D\}^\{\}|f(z)|^p\,dx\,dy]^\{1/p\}<\infty $, where $A$ is the area of $D$. For $f\in L^p(D)$, set \[ E\_n^p(f)=\inf \_\{t\in \pi \_n\} \Vert f-t\Vert \_\{D,p\}\,; \]$\pi _n$ consists of all polynomials of degree at most $n$. In this paper we study the growth of an entire function in terms of approximation error in $L^p$-norm on $D$.},
author = {Kumar, Devendra, Kasana, Harvir S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {approximation error; generalized parameters; $L^p$ norm and Fourier coefficients},
language = {eng},
number = {4},
pages = {681-689},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the approximation of entire functions over Carathéodory domains},
url = {http://eudml.org/doc/247619},
volume = {35},
year = {1994},
}

TY - JOUR
AU - Kumar, Devendra
AU - Kasana, Harvir S.
TI - On the approximation of entire functions over Carathéodory domains
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 4
SP - 681
EP - 689
AB - Let $D$ be a Carathéodory domain. For $1\le p\le \infty $, let $L^p(D)$ be the class of all functions $f$ holomorphic in $D$ such that $\Vert f\Vert _{D,p}=[\frac{1}{A}\int \int _{D}^{}|f(z)|^p\,dx\,dy]^{1/p}<\infty $, where $A$ is the area of $D$. For $f\in L^p(D)$, set \[ E_n^p(f)=\inf _{t\in \pi _n} \Vert f-t\Vert _{D,p}\,; \]$\pi _n$ consists of all polynomials of degree at most $n$. In this paper we study the growth of an entire function in terms of approximation error in $L^p$-norm on $D$.
LA - eng
KW - approximation error; generalized parameters; $L^p$ norm and Fourier coefficients
UR - http://eudml.org/doc/247619
ER -

References

top
  1. Bernstein S.N., Constructive theory of functions (1905-1930) in collected works, I, Akademia Nauk SSSR, 1952. MR0048360
  2. Juneja O.P., Approximation of an entire function, J. Approx. Theory 11 (1974), 343-349. (1974) Zbl0285.30030MR0390608
  3. Kapoor G.P., Nautiyal A., Polynomial approximation of an entire function of slow growth, J. Approx. Theory 32 (1981), 64-75. (1981) Zbl0495.41005MR0629582
  4. Markushevich A.I., Theory of Functions of a Complex Variable, III, Prentice Hall, Inc., Englewood Cliffs, N.J., 1967. MR0215964
  5. Nautiyal A., Rizvi S.R.H., Kapoor G.P., On the approximation of an entire function in L 2 -norm, Bull. Malaysian Math. Soc. (2) 5 (1982), 21-31. (1982) MR0683808
  6. Reddy A.R., Approximation of an entire function, J. Approx. Theory 3 (1970), 128-137. (1970) Zbl0207.07302MR0259453
  7. Reddy A.R., Best polynomial approximation to certain entire functions, J. Approx. Theory 5 (1972), 97-112. (1972) Zbl0225.41006MR0404635
  8. Seremeta M.N., On the connection between the growth of the maximum modulus of an entire function and the moduli of the coefficients of its power series expansion, Amer. Math. Soc. Transl. 88 (1970), 291-301. (1970) 
  9. Shah S.M., Polynomial approximation of an entire function and generalized orders, J. Approx. Theory 19 (1977), 315-324. (1977) Zbl0311.30034MR0440254
  10. Smirnov V.I., Lebedev N.A., Functions of a Complex Variable: Constructive Theory, M.I.T. Press, Mass., USA, 1968. Zbl0164.37503MR0229803
  11. Varga R.S., On an extension of a result of Bernstein, J. Approx. Theory 1 (1968), 176-179. (1968) MR0240528
  12. Winiarski T., Approximation and interpolation of entire functions, Ann. Polon. MAth. 23 (1970), 259-273. (1970) Zbl0205.37905MR0273032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.