Galerkin approximations for nonlinear evolution inclusions
Shouchuan Hu; Nikolaos S. Papageorgiou
Commentationes Mathematicae Universitatis Carolinae (1994)
- Volume: 35, Issue: 4, page 705-720
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHu, Shouchuan, and Papageorgiou, Nikolaos S.. "Galerkin approximations for nonlinear evolution inclusions." Commentationes Mathematicae Universitatis Carolinae 35.4 (1994): 705-720. <http://eudml.org/doc/247626>.
@article{Hu1994,
abstract = {In this paper we study the convergence properties of the Galerkin approximations to a nonlinear, nonautonomous evolution inclusion and use them to determine the structural properties of the solution set and establish the existence of periodic solutions. An example of a multivalued parabolic p.d.ei̇s also worked out in detail.},
author = {Hu, Shouchuan, Papageorgiou, Nikolaos S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Galerkin approximations; evolution triple; monotone operator; hemicontinuous operator; compact embedding; periodic trajectory; tangent cone; connected set; acyclic set; monotone operator; convergence; Galerkin approximations; nonlinear nonautonomous evolution inclusion; Hilbert space; periodic solutions; multivalued parabolic partial differential equations},
language = {eng},
number = {4},
pages = {705-720},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Galerkin approximations for nonlinear evolution inclusions},
url = {http://eudml.org/doc/247626},
volume = {35},
year = {1994},
}
TY - JOUR
AU - Hu, Shouchuan
AU - Papageorgiou, Nikolaos S.
TI - Galerkin approximations for nonlinear evolution inclusions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 4
SP - 705
EP - 720
AB - In this paper we study the convergence properties of the Galerkin approximations to a nonlinear, nonautonomous evolution inclusion and use them to determine the structural properties of the solution set and establish the existence of periodic solutions. An example of a multivalued parabolic p.d.ei̇s also worked out in detail.
LA - eng
KW - Galerkin approximations; evolution triple; monotone operator; hemicontinuous operator; compact embedding; periodic trajectory; tangent cone; connected set; acyclic set; monotone operator; convergence; Galerkin approximations; nonlinear nonautonomous evolution inclusion; Hilbert space; periodic solutions; multivalued parabolic partial differential equations
UR - http://eudml.org/doc/247626
ER -
References
top- Attouch H., Variational Convergence for Functional and Operator, Pitman, London, 1984.
- DeBlasi F.S., Myjak J., On continuous approximations for multifunctions, Pacific J. Math. 123 (1986), 9-31. (1986) MR0834135
- DeBlasi F.S., Myjak J., On the solution sets for differential inclusions, Bulletin Polish Acad. Sci. 33 (1985), 17-23. (1985) MR0798723
- Eilenberg S., Montgomery D., Fixed point theorems for multivalued transformations, Amer. J. Math. 68 (1946), 214-222. (1946) Zbl0060.40203MR0016676
- Hu S., Papageorgiou N.S., On the topological regularity of the solution set of differential inclusions with state constraints, J. Diff. Equations 107 (1994), in press. (1994) MR1264523
- Lakshmikantham V., Leela S., Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, Oxford, 1981. Zbl0456.34002MR0616449
- Papageorgiou N.S., Convergence theorems for Banach space valued integrable multifunctions, J. Math. Math. Sci. 10 (1987), 433-442. (1987) Zbl0619.28009MR0896595
- Papageorgiou N.S., On infinite dimensional control systems with state and control constraints, Proc. Indian Acad. Sci. 100 (1990), 65-79. (1990) Zbl0703.49018MR1051092
- Papageorgiou N.S., A viability result for nonlinear time dependent evolution inclusion, Yokohama Math. Jour. 40 (1992), 73-86. (1992) MR1190002
- Papageorgiou N.S., On the bang-bang principle for nonlinear evolution inclusions, Aequationes Math. 45 (1993), 267-280. (1993) Zbl0780.34046MR1212391
- Strang G., Fix G., An Analysis of the FInite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1973. Zbl0356.65096MR0443377
- Zeidler E., Nonlinear Functional Analysis and its Application II, Springer Verlag, New York, 1990. MR0816732
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.