On Cohen-Macaulay rings
Edgar E. Enochs; Jenda M. G. Overtoun
Commentationes Mathematicae Universitatis Carolinae (1994)
- Volume: 35, Issue: 2, page 223-230
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topEnochs, Edgar E., and Overtoun, Jenda M. G.. "On Cohen-Macaulay rings." Commentationes Mathematicae Universitatis Carolinae 35.2 (1994): 223-230. <http://eudml.org/doc/247640>.
@article{Enochs1994,
abstract = {In this paper, we use a characterization of $R$-modules $N$ such that $fd_RN = pd_RN$ to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting $N$ to be the $dth$ local cohomology functor of $R$ with respect to the maximal ideal where $d$ is the Krull dimension of $R$.},
author = {Enochs, Edgar E., Overtoun, Jenda M. G.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {injective; precovers; preenvelopes; canonical module; Cohen-Macaulay; $n$-Gorenstein; resolvent; resolutions; flat dimension; projective dimension; Cohen-Macaulay ring},
language = {eng},
number = {2},
pages = {223-230},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On Cohen-Macaulay rings},
url = {http://eudml.org/doc/247640},
volume = {35},
year = {1994},
}
TY - JOUR
AU - Enochs, Edgar E.
AU - Overtoun, Jenda M. G.
TI - On Cohen-Macaulay rings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 2
SP - 223
EP - 230
AB - In this paper, we use a characterization of $R$-modules $N$ such that $fd_RN = pd_RN$ to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting $N$ to be the $dth$ local cohomology functor of $R$ with respect to the maximal ideal where $d$ is the Krull dimension of $R$.
LA - eng
KW - injective; precovers; preenvelopes; canonical module; Cohen-Macaulay; $n$-Gorenstein; resolvent; resolutions; flat dimension; projective dimension; Cohen-Macaulay ring
UR - http://eudml.org/doc/247640
ER -
References
top- Auslander M., Buchweitz R., The homological theory of maximal Cohen-Macaulay approximations, Soc. Math. de France, Memoire 38 (1989), 5-37. (1989) Zbl0697.13005MR1044344
- Bass H., On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28. (1963) Zbl0112.26604MR0153708
- Enochs E., Jenda O., Copure injective resolutions, flat resolvents and dimensions, Comment. Math. Univ. Carolinae 34 (1993), 202-211. (1993) Zbl0780.18006MR1241728
- Enochs E., Jenda O., Balanced functors applied to modules, J. Algebra 92 (1985), 303-310. (1985) Zbl0554.18006MR0778450
- Foxby H.-B., Isomorphisms between complexes with applications to the homological theory of modules, Math. Scand. 40 (1977), 5-19. (1977) Zbl0356.13004MR0447269
- Grothendieck A., Local Cohomology, Lecture Notes in Mathematics 41, Springer, 1967. Zbl1079.14001MR0224620
- Herzog J., Kunz E., Der Kanonische Modul eines Cohen-Macaulay-Rings, Lecture Notes in Mathematics 238, Springer, 1971. Zbl0231.13009MR0412177
- Ishikawa T., On injective modules and flat modules, Math. Soc. Japan 17 (1965), 291-296. (1965) Zbl0199.07802MR0188272
- Jensen C., Les foncteurs dérivées de et leurs applications en théorie des modules, Lecture Notes in Mathematics 254, Springer, 1972. MR0407091
- Lenzing H., Endlich präsentierbare Moduln, Arch Math. 20 (1969), 262-266. (1969) Zbl0184.06501MR0244322
- Roberts P., Homological invariants of modules over commutative rings, Semin. Math. Super. 15, Presses Univ. Montreal, 1980. Zbl0467.13007MR0569936
- Strooker J., Homological questions in local algebra, London Math. Soc. Lecture Note Series 145, Cambridge Univ. Press, 1990. Zbl0786.13008MR1074178
- Yoshino Y., Cohen-Macaulay modules over Cohen-Macaulay rings, London Math. Soc. Lecture Note Series 146, Cambridge Univ. Press, 1990. Zbl0745.13003MR1079937
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.