On Cohen-Macaulay rings

Edgar E. Enochs; Jenda M. G. Overtoun

Commentationes Mathematicae Universitatis Carolinae (1994)

  • Volume: 35, Issue: 2, page 223-230
  • ISSN: 0010-2628

Abstract

top
In this paper, we use a characterization of R -modules N such that f d R N = p d R N to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting N to be the d t h local cohomology functor of R with respect to the maximal ideal where d is the Krull dimension of R .

How to cite

top

Enochs, Edgar E., and Overtoun, Jenda M. G.. "On Cohen-Macaulay rings." Commentationes Mathematicae Universitatis Carolinae 35.2 (1994): 223-230. <http://eudml.org/doc/247640>.

@article{Enochs1994,
abstract = {In this paper, we use a characterization of $R$-modules $N$ such that $fd_RN = pd_RN$ to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting $N$ to be the $dth$ local cohomology functor of $R$ with respect to the maximal ideal where $d$ is the Krull dimension of $R$.},
author = {Enochs, Edgar E., Overtoun, Jenda M. G.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {injective; precovers; preenvelopes; canonical module; Cohen-Macaulay; $n$-Gorenstein; resolvent; resolutions; flat dimension; projective dimension; Cohen-Macaulay ring},
language = {eng},
number = {2},
pages = {223-230},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On Cohen-Macaulay rings},
url = {http://eudml.org/doc/247640},
volume = {35},
year = {1994},
}

TY - JOUR
AU - Enochs, Edgar E.
AU - Overtoun, Jenda M. G.
TI - On Cohen-Macaulay rings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 2
SP - 223
EP - 230
AB - In this paper, we use a characterization of $R$-modules $N$ such that $fd_RN = pd_RN$ to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting $N$ to be the $dth$ local cohomology functor of $R$ with respect to the maximal ideal where $d$ is the Krull dimension of $R$.
LA - eng
KW - injective; precovers; preenvelopes; canonical module; Cohen-Macaulay; $n$-Gorenstein; resolvent; resolutions; flat dimension; projective dimension; Cohen-Macaulay ring
UR - http://eudml.org/doc/247640
ER -

References

top
  1. Auslander M., Buchweitz R., The homological theory of maximal Cohen-Macaulay approximations, Soc. Math. de France, Memoire 38 (1989), 5-37. (1989) Zbl0697.13005MR1044344
  2. Bass H., On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28. (1963) Zbl0112.26604MR0153708
  3. Enochs E., Jenda O., Copure injective resolutions, flat resolvents and dimensions, Comment. Math. Univ. Carolinae 34 (1993), 202-211. (1993) Zbl0780.18006MR1241728
  4. Enochs E., Jenda O., Balanced functors applied to modules, J. Algebra 92 (1985), 303-310. (1985) Zbl0554.18006MR0778450
  5. Foxby H.-B., Isomorphisms between complexes with applications to the homological theory of modules, Math. Scand. 40 (1977), 5-19. (1977) Zbl0356.13004MR0447269
  6. Grothendieck A., Local Cohomology, Lecture Notes in Mathematics 41, Springer, 1967. Zbl1079.14001MR0224620
  7. Herzog J., Kunz E., Der Kanonische Modul eines Cohen-Macaulay-Rings, Lecture Notes in Mathematics 238, Springer, 1971. Zbl0231.13009MR0412177
  8. Ishikawa T., On injective modules and flat modules, Math. Soc. Japan 17 (1965), 291-296. (1965) Zbl0199.07802MR0188272
  9. Jensen C., Les foncteurs dérivées de lim et leurs applications en théorie des modules, Lecture Notes in Mathematics 254, Springer, 1972. MR0407091
  10. Lenzing H., Endlich präsentierbare Moduln, Arch Math. 20 (1969), 262-266. (1969) Zbl0184.06501MR0244322
  11. Roberts P., Homological invariants of modules over commutative rings, Semin. Math. Super. 15, Presses Univ. Montreal, 1980. Zbl0467.13007MR0569936
  12. Strooker J., Homological questions in local algebra, London Math. Soc. Lecture Note Series 145, Cambridge Univ. Press, 1990. Zbl0786.13008MR1074178
  13. Yoshino Y., Cohen-Macaulay modules over Cohen-Macaulay rings, London Math. Soc. Lecture Note Series 146, Cambridge Univ. Press, 1990. Zbl0745.13003MR1079937

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.