On Gauss sum characters of finite groups and generalized Bernoulli numbers

Shoichi Nakajima

Journal de théorie des nombres de Bordeaux (1995)

  • Volume: 7, Issue: 1, page 143-154
  • ISSN: 1246-7405

How to cite

top

Nakajima, Shoichi. "On Gauss sum characters of finite groups and generalized Bernoulli numbers." Journal de théorie des nombres de Bordeaux 7.1 (1995): 143-154. <http://eudml.org/doc/247651>.

@article{Nakajima1995,
author = {Nakajima, Shoichi},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Galois covering; compact Riemann surfaces; holomorphic differentials; Gauss sum characters; generalized Bernoulli number},
language = {eng},
number = {1},
pages = {143-154},
publisher = {Université Bordeaux I},
title = {On Gauss sum characters of finite groups and generalized Bernoulli numbers},
url = {http://eudml.org/doc/247651},
volume = {7},
year = {1995},
}

TY - JOUR
AU - Nakajima, Shoichi
TI - On Gauss sum characters of finite groups and generalized Bernoulli numbers
JO - Journal de théorie des nombres de Bordeaux
PY - 1995
PB - Université Bordeaux I
VL - 7
IS - 1
SP - 143
EP - 154
LA - eng
KW - Galois covering; compact Riemann surfaces; holomorphic differentials; Gauss sum characters; generalized Bernoulli number
UR - http://eudml.org/doc/247651
ER -

References

top
  1. [1] C. Chevalley and A. Weil, Über das Verhalten der Integrale erster Gattung bei Automorphismen des Funktionenkörpers, Abh. Math. Sem. Hamburg Univ.10 (1934), 358-361, A. Weil: Collected Papers, vol. I, 68-71. Zbl0009.16001JFM60.0098.01
  2. [2] H. Feldmann, Über das Verhalten der Modulfunktionen von Primzahlstufe bei beliebigen Modulsubstitutionen, Abh. Math. Sem. Hamburg Univ.8 (1931), 323-347. Zbl0002.19804JFM57.0445.01
  3. [3] R. Hartshorne, Algebraic Geometry, Springer Verlag, New York-Heidelberg -Berlin, 1977. Zbl0367.14001MR463157
  4. [4] K. Hashimoto, Representations of the finite symplectic group Sp(4, Fp) in the spaces of Siegel modular forms, Contemporary Math.53 (1986), 253-276. Zbl0592.10024
  5. [5] H. Hasse, Vorlesungen über Zahlentheorie, zweite Auflage, Springer Verlag, Berlin-Gottingen- Heidelberg-New York, 1964. MR188128
  6. [6] E. Hecke, Mathematische Werke, zweite Auflage, Vandenhoeck & Ruprecht, Göttingen, 1970. Zbl0205.28902MR371577
  7. [7] H. Joris, On the evaluation of Gaussian sums for non-primitive Dirichlet characters, L'enseignement math.23 (1977), 13-18. Zbl0352.10018MR441888
  8. [8] D.L. McQuillan, A generalization of a theorem of Hecke, Amer. J. Math.84 (1962), 306-316. Zbl0114.02503MR141644
  9. [9] S. Nakajima, Galois module structure of cohomology groups for tamely ramified coverings of algebraic varieties, J. Number Theory22 (1986), 115-123. Zbl0602.14017MR821138
  10. [10] S. Nakajima, Action of finite groups on the holomorphic differentials of Riemann surfaces and the class numbers of imaginary quadratic fields, Reports of Number Theory Symposium, Osaka in Japanese (1989), 37-42. 
  11. [11] H. Saito, On the representation of SL2 (Fq) in the space of Hilbert modular forms, J. Math. Kyoto Univ.15 (1975), 101-128. Zbl0305.10022MR384706
  12. [12] J.-P. Serre, Linear Representations of Finite Groups, Springer Verlag, BerlinHeidelberg- New York, 1977. Zbl0355.20006MR450380
  13. [13] K. Shih, On the construction of Galois extensions of function fields and number fields, Math. Ann.207 (1974), 99-120. Zbl0279.12102MR332725
  14. [14] H. Spies, Die Darstellung der inhomogenen Modulargruppe mod qn durch die ganzen Modulformen gerader Dimension, Math. Ann.111 (1935), 329-354. Zbl0012.10101MR1512999JFM61.0110.03
  15. [15] L.C. Washington, Introduction to cyclotomic fields, Springer Verlag, New York-Heidelberg -Berlin, 1982. Zbl0484.12001MR718674
  16. [16] A. Weil, Über Matrizenringe auf Riemannschen flächen und den Riemann-Rochschen Satz, Abh. Math. Sem. Hamburg Univ.11 (1935), 110-115, A. Weil: Collected Papers, I,80-85. Zbl0011.12203JFM61.0123.01
  17. [17] S.H. Weintraub, PSL2(Zp) and the Atiyah-Bott fixed-point theorem, Houston J. Math.6 (1980), 427-430. ' Zbl0463.10016MR597780

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.