The palindromic index - A measure of ambiguous cycles of reduced ideals without any ambiguous ideals in real quadratic orders
Journal de théorie des nombres de Bordeaux (1995)
- Volume: 7, Issue: 2, page 447-460
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topMollin, Richard A.. "The palindromic index - A measure of ambiguous cycles of reduced ideals without any ambiguous ideals in real quadratic orders." Journal de théorie des nombres de Bordeaux 7.2 (1995): 447-460. <http://eudml.org/doc/247666>.
@article{Mollin1995,
abstract = {Herein we introduce the palindromic index as a device for studying ambiguous cycles of reduced ideals with no ambiguous ideal in the cycle.},
author = {Mollin, Richard A.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {quadratic order; class number; palindromic index; ambiguous cycle; continued fractions; reduced ideals; ambiguous classes of ideals; real quadratic fields; real quadratic order; ambiguous cycles of ideals},
language = {eng},
number = {2},
pages = {447-460},
publisher = {Université Bordeaux I},
title = {The palindromic index - A measure of ambiguous cycles of reduced ideals without any ambiguous ideals in real quadratic orders},
url = {http://eudml.org/doc/247666},
volume = {7},
year = {1995},
}
TY - JOUR
AU - Mollin, Richard A.
TI - The palindromic index - A measure of ambiguous cycles of reduced ideals without any ambiguous ideals in real quadratic orders
JO - Journal de théorie des nombres de Bordeaux
PY - 1995
PB - Université Bordeaux I
VL - 7
IS - 2
SP - 447
EP - 460
AB - Herein we introduce the palindromic index as a device for studying ambiguous cycles of reduced ideals with no ambiguous ideal in the cycle.
LA - eng
KW - quadratic order; class number; palindromic index; ambiguous cycle; continued fractions; reduced ideals; ambiguous classes of ideals; real quadratic fields; real quadratic order; ambiguous cycles of ideals
UR - http://eudml.org/doc/247666
ER -
References
top- [1] H. Cohn, A second course in number theory, John Wiley and Sons Inc., New York/London (1962). Zbl0208.31501MR133281
- [2] H. Cohen, A course in computational algebraic number theory, Springer-Verlag, Berlin, Graduate Texts in Mathematics138, (1993). Zbl0786.11071MR1228206
- [3] F. Halter-Koch, Prime-producing quadratic polynomials and class numbers of quadratic orders in Computational Number Theory, (A. Pethô, M. Pohst, H.C. Williams, and H.G. Zimmer eds.) Walter de Gruyter, Berlin (1991), 73—82. Zbl0728.11049MR1151856
- [4] F. Halter-Koch, P. Kaplan, K.S. Williams and Y. Yamamoto, Infrastructure des Classes Ambiges D'Idéaux des ordres des corps quadratiques réels, L'Enseignement Math37 (1991), 263—292. Zbl0756.11030MR1151751
- [5] P. Kaplan and K.S. Williams, The distance between ideals in the orders of real quadratic fields, L'Enseignment Math.36 (1990), 321-358. Zbl0726.11024MR1096423
- [6] S. Louboutin, Groupes des classes d'ideaux triviaux, Acta. Arith.LIV (1989), 61-74. Zbl0634.12008MR1024418
- [7] S. Louboutin, R.A. Mollin and H.C. Williams, Class numbers of real quadratic fields, continued fractions, raeduced ideals, prime-producing quadratic polynomials, and quadratic residue covers, Can. J. Math.44 (1992), 824-842. Zbl0771.11039MR1178571
- [8] R.A. Mollin, Ambiguous Classes in Real Quadratic Fields, Math Comp.61 (1993), 355-360. Zbl0790.11076MR1195434
- [9] R.A. Mollin and H.C. Williams, Classification and enumeration of real quadratic fields having exactly one non-inert prime less than a Minkowski bound, Can. Math. Bull.36 (1993), 108-115. Zbl0803.11054MR1205902
- [10] H.C. Williams and M.C. Wunderlich, On the parallel generation of the residues for the continued fraction factoring algorithm, Math. Comp.77 (1987), 405-423. Zbl0617.10005MR866124
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.