The palindromic index - A measure of ambiguous cycles of reduced ideals without any ambiguous ideals in real quadratic orders
Journal de théorie des nombres de Bordeaux (1995)
- Volume: 7, Issue: 2, page 447-460
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] H. Cohn, A second course in number theory, John Wiley and Sons Inc., New York/London (1962). Zbl0208.31501MR133281
- [2] H. Cohen, A course in computational algebraic number theory, Springer-Verlag, Berlin, Graduate Texts in Mathematics138, (1993). Zbl0786.11071MR1228206
- [3] F. Halter-Koch, Prime-producing quadratic polynomials and class numbers of quadratic orders in Computational Number Theory, (A. Pethô, M. Pohst, H.C. Williams, and H.G. Zimmer eds.) Walter de Gruyter, Berlin (1991), 73—82. Zbl0728.11049MR1151856
- [4] F. Halter-Koch, P. Kaplan, K.S. Williams and Y. Yamamoto, Infrastructure des Classes Ambiges D'Idéaux des ordres des corps quadratiques réels, L'Enseignement Math37 (1991), 263—292. Zbl0756.11030MR1151751
- [5] P. Kaplan and K.S. Williams, The distance between ideals in the orders of real quadratic fields, L'Enseignment Math.36 (1990), 321-358. Zbl0726.11024MR1096423
- [6] S. Louboutin, Groupes des classes d'ideaux triviaux, Acta. Arith.LIV (1989), 61-74. Zbl0634.12008MR1024418
- [7] S. Louboutin, R.A. Mollin and H.C. Williams, Class numbers of real quadratic fields, continued fractions, raeduced ideals, prime-producing quadratic polynomials, and quadratic residue covers, Can. J. Math.44 (1992), 824-842. Zbl0771.11039MR1178571
- [8] R.A. Mollin, Ambiguous Classes in Real Quadratic Fields, Math Comp.61 (1993), 355-360. Zbl0790.11076MR1195434
- [9] R.A. Mollin and H.C. Williams, Classification and enumeration of real quadratic fields having exactly one non-inert prime less than a Minkowski bound, Can. Math. Bull.36 (1993), 108-115. Zbl0803.11054MR1205902
- [10] H.C. Williams and M.C. Wunderlich, On the parallel generation of the residues for the continued fraction factoring algorithm, Math. Comp.77 (1987), 405-423. Zbl0617.10005MR866124